Collision Avoidance in Circular Motion of a Fixed-Wing Drone Formation Based on Rotational Modification of Artificial Potential Field
- Autores: Muslimov T.Z1
-
Afiliações:
- Ufa University of Science and Technology (UUST)
- Edição: Volume 24, Nº 1 (2025)
- Páginas: 72-98
- Seção: Robotics, automation and control systems
- URL: https://journals.rcsi.science/2713-3192/article/view/278223
- DOI: https://doi.org/10.15622/ia.24.1.4
- ID: 278223
Citar
Texto integral
Resumo
In coordinated circular motion of a group of autonomous unmanned aerial vehicles (UAVs or drones), it is important to ensure that collisions between them are avoided. A typical situation occurs when one of the drones in a circular formation needs to overtake the drone ahead. The reason for such an overtake may be due to a given geometry of the UAV formation, when this configuration of a given relative position of the drones has changed for some reason. In this case, the limited maneuverability of UAVs of exactly fixed-wing type requires taking into account the peculiarities of their dynamics in the synthesis of the collision avoidance algorithm. The impossibility of the airspeed for a fixed-wing type UAV to drop below a certain minimum value also plays a role here. In this paper, we propose to use an approach based on vortex vector fields, which are essentially a rotational modification of the artificial potential field (APF) method. In this case, the path following algorithm developed in our previous works provides the circular motion. As a result, a collision avoidance algorithm has been developed that works efficiently by maintaining a coordinated circular motion of the autonomous drone formation without unnecessary turns. The proposed algorithm was named Artificial Potential Field for Circular Motion (abbreviated as APFfCM). Using the direct Lyapunov method, it is shown that the trajectories of the formation system have uniform boundedness (UB) when using the proposed control algorithm. Due to the boundedness of the candidate Lyapunov function, it is guaranteed that no collision event between drones will occur. Thus the control objective of providing coordinated circular motion for an autonomous fixed-wing type drone formation without collisions is achieved. Fixed-wing (“flying wing”) UAV models in MATLAB/Simulink environment demonstrate the effective performance of the proposed algorithm. These models have both full nonlinear dynamics and implementation of tuned autopilots stabilizing angular and trajectory motion.
Sobre autores
T. Muslimov
Ufa University of Science and Technology (UUST)
Autor responsável pela correspondência
Email: tagir.muslimov@gmail.com
Karl Marx St. 12
Bibliografia
- Платонов А.К., Кирильченко А.А., Колганов М.А. Метод потенциалов в задаче выбора пути: история и перспективы. Препринты Института прикладной математики им. М.В. Келдыша РАН. 2001. Препринт ИПМ № 40.
- Khatib O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The international journal of robotics research. 1986. vol. 5. no. 1. pp. 90–98.
- Bojian L., Jun F., Yunxiao Q., Aijun L. Precise Formation Control for the Multi-agent Systems Based on Tilted Potential Field with Collision Avoidance. International Conference on Guidance, Navigation and Control. Lecture Notes in Electrical Engineering. 2023. vol. 845. pp. 84–93. doi: 10.1007/978-981-19-6613-2_10.
- Alhaddad M., Mironov K., Staroverov A., Panov A. Neural Potential Field for Obstacle-Aware Local Motion Planning. 2023. arxiv preprint arXiv:2310.16362. doi: 10.48550/arXiv.2310.16362.
- Filimonov A.B., Filimonov N.B. The Concept of Fairway in Problems of Potential Guidance of Mobile Robots. Optoelectronics, Instrumentation and Data Processing. 2022. vol. 58. no. 4. pp. 366–372. doi: 10.3103/S8756699022040057.
- Szczepanski R., Tarczewski T., Erwinski K. Energy Efficient Local Path Planning Algorithm Based on Predictive Artificial Potential Field. IEEE Access. 2022. vol. 10. pp. 39729–39742. doi: 10.1109/ACCESS.2022.3166632.
- Микишанина Е.А., Платонов П.С. Алгоритмизация управления мобильным колесным роботом в среде с препятствиями методом потенциальных полей. Мехатроника, автоматизация, управление. 2024. Т. 25. № 2. С. 93–100.
- Xi Z., Han H., Cheng J., Lv M. Reducing Oscillations for Obstacle Avoidance in a Dense Environment Using Deep Reinforcement Learning and Time-Derivative of an Artificial Potential Field. Drones. 2024. vol. 8. no. 3. doi: 10.3390/drones8030085.
- De Medio C., Nicolò F., Oriolo G. Robot Motion Planning Using Vortex Fields. New Trends in Systems Theory. Progress in Systems and Control Theory. Boston: Birkhäuser Boston. 1991. vol. 7. pp. 237–244.
- De Medio C., Oriolo G. Robot Obstacle Avoidance Using Vortex Fields. Advances in Robot Kinematics. Vienna: Springer Vienna. 1991. pp. 227–235. doi: 10.1007/978-3-7091-4433-6_26.
- De Luca A., Oriolo G. Local incremental planning for nonholonomic mobile robots. Proc. IEEE Int. Conf. Robot. Autom. 1994. pp. 104–110. doi: 10.1109/ROBOT.1994.351003.
- Martis W.P., Rao S. Cooperative Collision Avoidance in Mobile Robots using Dynamic Vortex Potential Fields. 9th Int. Conf. Autom. Robot. Appl. (ICARA 2023). 2023. pp. 60–64. doi: 10.1109/ICARA56516.2023.10125851.
- Choi D., Lee K., Kim D. Enhanced Potential Field-Based Collision Avoidance for Unmanned Aerial Vehicles in a Dynamic Environment. AIAA Scitech 2020 Forum. 2020. doi: 10.2514/6.2020-0487.
- Choi D., Kim D., Lee K. Enhanced Potential Field-Based Collision Avoidance in Cluttered Three-Dimensional Urban Environments. Appl. Sci. 2021. vol. 11. no. 22. doi: 10.3390/app112211003.
- Choi D., Chhabra A., Kim D. Intelligent cooperative collision avoidance via fuzzy potential fields. Robotica. 2022. vol. 40. no. 6. pp. 1919–1938. doi: 10.1017/S0263574721001454.
- Batinovic A., Goricanec J., Markovic L., Bogdan S. Path Planning with Potential Field-Based Obstacle Avoidance in a 3D Environment by an Unmanned Aerial Vehicle. International Conference on Unmanned Aircraft Systems (ICUAS). 2022. pp. 394–401. doi: 10.1109/ICUAS54217.2022.9836159.
- Goricanec J., Milas A., Markovic L., Bogdan S. Collision-Free Trajectory Following With Augmented Artificial Potential Field Using UAVs. IEEE Access. 2023. vol. 11. pp. 83492–83506. doi: 10.1109/ACCESS.2023.3303109.
- Szczepanski R. Safe Artificial Potential Field – Novel Local Path Planning Algorithm Maintaining Safe Distance From Obstacles. IEEE Robot. Autom. Lett. 2023. vol. 8. no. 8. pp. 4823–4830. doi: 10.1109/LRA.2023.3290819.
- Su Y.-H., Bhowmick P., Lanzon A. A Fixed-time Formation-containment Control Scheme for Multi-agent Systems with Motion Planning: Applications to Quadcopter UAVs. IEEE Transactions on Vehicular Technology. 2024. vol. 73. no. 7. pp. 9495–9507. doi: 10.1109/TVT.2024.3382489.
- Muslimov T. Curl-Free Vector Field for Collision Avoidance in a Swarm of Autonomous Drones. Lecture Notes in Computer Science. Interactive Collaborative Robotics (ICR 2023). 2023. vol. 14214. pp. 369–379.
- Muslimov T., Kozlov E., Munasypov R. Drone Swarm Movement without Collisions with Fixed Obstacles Using a Hybrid Algorithm Based on Potential Functions. International Russian Automation Conference (RusAutoCon). 2023. pp. 781–785.
- Gao Y., Bai C., Fu R., Quan Q. A non-potential orthogonal vector field method for more efficient robot navigation and control. Rob. Auton. Syst. 2023. vol. 159. doi: 10.1016/j.robot.2022.104291.
- Park C., Cho N., Lee K., Kim Y. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing. Sensors. 2015. vol. 15. no. 7. pp. 17397–17419.
- Kim S., Cho H., Jung D. Circular Formation Guidance of Fixed-Wing UAVs Using Mesh Network. IEEE Access. 2022. vol. 10. pp. 115295–115306. doi: 10.1109/ACCESS.2022.3218673.
- Muslimov T. Cooperative Circumnavigation with Robust Vector Field Guidance for Multiple UAVs in Unknown Wind Environments. J. Intell. Robot. Syst. 2023. vol. 109. no. 84. doi: 10.1007/s10846-023-02000-3.
- Муслимов Т.З. Методы и алгоритмы группового управления беспилотными летательными аппаратами самолетного типа. Системная инженерия и информационные технологии. 2024. Т. 6. № 1(16). С. 3–15.
- Lafmejani A.S., Farivarnejad H., Sorkhabadi M.R., Zahedi F., Doroudchi A., Berman S. Collision-Free Velocity Tracking of a Moving Ground Target by Multiple Unmanned Aerial Vehicles. The 4th International Symposium on Swarm Behavior and Bio-Inspired Robotics. 2021.
- Peters S.C., Bobrow J.E., Iagnemma K. Stabilizing a vehicle near rollover: An analogy to cart-pole stabilization. IEEE International Conference on Robotics and Automation. 2010. pp. 5194–5200. doi: 10.1109/ROBOT.2010.5509367.
- Beard R.W., McLain T.W. Small unmanned aircraft: Theory and practice. Princeton and Oxford: Princeton University Press. 2012. 320 p.
Arquivos suplementares
