Computational Technology for Shell Models of Magnetohydrodynamic Turbulence Constructing
- Authors: Vodinchar G.M1, Feshchenko L.K1
-
Affiliations:
- Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS
- Issue: Vol 23, No 6 (2024)
- Pages: 1665-1697
- Section: Mathematical modeling and applied mathematics
- URL: https://journals.rcsi.science/2713-3192/article/view/271661
- DOI: https://doi.org/10.15622/ia.23.6.4
- ID: 271661
Cite item
Full Text
Abstract
About the authors
G. M Vodinchar
Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS
Email: gvodinchar@ikir.ru
Mirnaya St. 7
L. K Feshchenko
Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS
Email: feshenko.lk@yandex.ru
Mirnaya St. 7
References
- Фрик П.Г. Турбулентность: подходы и модели. Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2010. 332 c.
- Ditlevsen P.D. Turbulence and shell models. New York: University Press, 2011. 152 p. doi: 10.1017/CBO9780511919251.
- Gibbon J.D., Vincenzi D. How to extract a spectrum from hydrodynamic equations? // Journal of Nonlinear Science. 2022. vol. 32. no. 6. pp. 1–25.
- Gurcan D., Xu S., Morel P. Spiral chain models of two-dimensional turbulence // Physical Review E. 2019. vol. 100. no. 4. doi: 10.1103/PhysRevE.100.043113.
- Mailybaev A.A. Hidden scale invariance of intermittent turbulence in a shell model // Physical Review Fluids. 2021. vol. 6. no. 1. doi: 10.1103/PhysRevFluids.6.L012601.
- Plunian, F., Stepanov R., Frick P. Shell models of magnetohydroodynamic turbulence // Physics Reports. 2013. vol. 523. no. 1. pp. 1–60.
- Munoz V., Dominguez M., Riquelme M., Nigro G., Carbone V. Fractality of an mhd shell model for turbulent plasma driven by solar wind data: a review // Journal of Atmospheric and Solar-Terrestrial Physics. 2021. vol. 214. doi: 10.1016/j.jastp.2020.105524.
- Chen N., Li Y., Lunasin E. An efficient continuous data assimilation algorithm for the sabra shell model of turbulence // Chaos. 2021. vol. 31. no. 10. doi: 10.1063/5.0057421.
- Li L., Liu P., Xing Y., Guo H. Shell models for confined rayleigh–taylor turbulent convection // Communications in Nonlinear Science and Numerical Simulation. 2020. vol. 84. doi: 10.1016/j.cnsns.2020.105204.
- Verdini A., Grappin R., Montagud-Camps V. Turbulent heating in the accelerating region using a multishell model // Solar Physics. 2019. vol. 294. doi: 10.1007/s11207-019-1458-y.
- Bhadra A., Mishra P.K. Energy spectrum and energy budget of superfluid turbulence using two-fluid shell model // AIP Advances. 2022. vol. 12. no. 2. doi: 10.1063/5.0083847.
- Nabil H., Balhamri A., Belafhal A. Propagation of bessel-gaussian shell-model beam through a jet engine exhaust turbulence // Optical and Quantum Electronics. 2022. vol. 54. no. 6. doi: 10.1007/s11082-022-03743-3.
- Tropina A.A., Miles R.B. Parametrical study of aero-optical effects using shell models of turbulence // AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022. doi: 10.2514/6.2022-0986.
- Inage S. Control parameter optimization for turbulence shell model // Computers and Fluids. 2021. vol. 229. doi: 10.1016/j.compfluid.2021.105084.
- Mailybaev A.A. Solvable intermittent shell model of turbulence // Communications in Mathematical Physics. 2021. vol. 388. no. 1. pp. 469–478.
- Gurcan O.D. Dynamical network models of the turbulent cascade // Physica D: Nonlinear Phenomena. 2021. vol. 426. doi: 10.1016/j.physd.2021.132983.
- Водинчар Г.М., Фещенко Л.К. Автоматизированная генерация каскадных моделей турбулентности методами компьютерной алгебры. // Вычислительные технологии. 2021. Т. 26. № 5. С. 65–80.
- Водинчар Г.М., Фещенко Л.К., Подлесный Н.В. Генерация комплексных каскадных моделей турбулентных систем методами компьютерной алгебры // Вестник КРАУНЦ. Физико-математические науки. 2022. Т. 41. № 4. С. 9–31.
- Vodinchar G.M., Feshchenko L.K. Computational Technology for the Basis and Coefficients of Geodynamo Spectral Models in the Maple System // Mathematics. 2023. vol. 11(13). doi: 10.3390/math11133000.
- Водинчар Г.М., Фещенко Л.К. Применение компьютерной алгебры для составления спектральных моделей кинематического осесимметричного динамо // Вычислительные технологии. 2023. Т. 28. № 2. С. 4–18.
- Bright C., Kotsireas I., Ganesh V. Applying computer algebra systems with SAT solvers to the Williamson conjecture // Jour. Symbolic Comp. 2020. vol. 100. pp. 187–209.
- Gayoso Martinez, V., Hernandez Encinas, L., Martin Munoz, A., Queiruga Dios, A. Using Free Mathimatical Software in Engineering Classes // Axioms. 2021. vol. 10(4). doi: 10.3390/axioms10040253.
- Bazan E.R., Hubert E. Multivariate interpolation: Preserving and exploiting symmetry // Journal of Symbolic Computation. 2021. vol. 107. pp. 1–22.
- Conceicao A.C., Pires J.C. Symbolic Computation Applied to Cauchy Type Singular Integrals // Math. Comput. Appl. 2022. vol. 27(1). doi: 10.3390/mca27010003.
- Campo-Montalvo E., Fernandez de Sevilla M., Magdalena Benedito J.R., Perez-Diaz S. Some New Symbolic Algorithms for the Computation of Generalized Asymptotes // Symmetry. 2023. vol. 15. no. 1. doi: 10.3390/sym15010069.
- Кирсанов М.Н. Математика и программирование в Maple. M.: Ай Пи Ар Медиа, 2020. 160 с.
- Wang F.Y. Physics with Maple: The Computer Algebra Resource for Mathematical Methods in Physics. New York: Wiley, 2006. 625 p.
- Campanelli L. One-dimensional model of freely decaying two-dimensional turbulence // Journal of the Korean Physical Society. 2022. vol. 80. no. 10. pp. 972–980.
- Campanelli L. Dimensional analysis of two-dimensional turbulence // Modern Physics Letters B. 2019. vol. 33. no. 19. doi: 10.1142/S021798491950218X.
- Федоряева Т.И. Комбинаторные алгоритмы. Новосибирск: НГУ, 2011. 118 с.
Supplementary files
