Anomaly and Cyber Attack Detection Technique Based on the Integration of Fractal Analysis and Machine Learning Methods
- Authors: Kotenko I.V1, Saenko I.B1, Lauta O.S2, Kriebel A.M1
-
Affiliations:
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
- State University of the Sea and River Fleet named after Admiral S.O. Makarov
- Issue: Vol 21, No 6 (2022)
- Pages: 1328-1358
- Section: Information security
- URL: https://journals.rcsi.science/2713-3192/article/view/267204
- DOI: https://doi.org/10.15622/ia.21.6.9
- ID: 267204
Cite item
Full Text
Abstract
Keywords
About the authors
I. V Kotenko
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: ivkote@comsec.spb.ru
14-th Line V.O. 39
I. B Saenko
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: ibsaen@comsec.spb.ru
14-th Line V.O. 39
O. S Lauta
State University of the Sea and River Fleet named after Admiral S.O. Makarov
Email: laos-82@yandex.ru
Dvinskaya St. 5/7
A. M Kriebel
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: nemo4ka74@gmail.com
14-th Line V.O. 39
References
- Kotenko I., Saenko I., Lauta O., Kribel A. An approach to detecting cyber attacks against smart power grids based on the analysis of network traffic self-similarity // Energies. 2020. vol. 13. no. 19. pp. 5031.
- Al-Jarrah M., Khalaf G., Amin S. PIN Authentication Using Multi-Model Anomaly Detection in Keystroke Dynamics // Proceedings of the 2019 2nd International Conference on Signal Processing and Information Security (ICSPIS). 2019. pp. 1–4.
- Ageev S., Kotenko I., Saenko I., Kopchak Y. Abnormal Traffic Detection in Networks of the Internet of Things Based on Fuzzy Logical Inference // Proceedings of the IEEE International Conference on Soft Computing and Measurements (SCM). 2015. pp. 5–8.
- Котенко Д.И., Котенко И.В., Саенко И.Б. Методы и средства моделирования атак в больших компьютерных сетях: состояние проблемы // Труды СПИИРАН. 2012. № 3 (22). С. 5–30.
- Brezigar-Masten A., Masten I. CART-based selection of bankruptcy predictors for the logit model // Expert Systems with Applications. 2012. vol. 39. no. 11. pp. 10153–10159.
- Ju X., Chen V.C.P.; Rosenberger J.M., Liu F. Fast knot optimization for multivariate adaptive regression splines using hill climbing methods // Expert Systems with Applications. 2021. no. 171. p. 114565.
- Ju X., Rosenberger J.M., Chen V.C.P., Liu F. Global optimization on non-convex two-way interaction truncated linear multivariate adaptive regression splines using mixed integer quadratic programming // Information Sciences. 2022. no. 597. pp. 38–52.
- Ju X., Liu F., Wang Li., Lee W.-J. Wind farm layout optimization based on support vector regression guided genetic algorithm with consideration of participation among landowners // Energy Conversion and Management. 2019. no. 196. pp. 1267–1281.
- Dang T.D., Sonkoly B., Molnar S. Fractal analysis and modeling of VoIP traffic // Proceedings of the 11th International Telecommunications Network Strategy and Planning Symposium (NETWORKS 2004). 2004. pp. 123–130.
- Leland W.E., Taqqu M.S., Willinger W., Wilson D.V. On the self-similar nature of Ethernet traffic // SIGCOMM Comput. Commun. 1993. vol. 23. no. 4. pp. 183–193.
- Raimundo M.S., Okamoto Jr. J. Application of Hurst Exponent (H) and the R/S Analysis in the Classification of FOREX Securities // International Journal of Modeling and Optimization. 2018. no. 8. pp. 116–124.
- Sánchez-Granero M.J., Fernández-Martínez M., Trinidad-Segovia J.E. Introducing fractal dimension algorithms to calculate the Hurst exponent of financial time series // Eur. Phys. J. B. 2012. vol. 85. no. 86.
- Kotenko I., Saenko I., Lauta O., Karpov M. Methodology for management of the protection system of smart power supply networks in the context of cyberattacks // Energies. 2021. vol. 14. no. 18. p. 5963.
- Kotenko I., Saenko I., Lauta O., Kribel A. Ensuring the survivability of embedded computer networks based on early detection of cyber attacks by integrating fractal analysis and statistical methods // Microprocessors and Microsystems. 2022. no. 90. p. 104459.
- Strelkovskaya I., Solovskaya I., Makoganiuk A. Spline-Extrapolation Method in Traffic Forecasting in 5G Networks // Journal of Telecommunications and Information Technology. 2019. no. 3. pp. 8–16.
- Carvalho P., Abdalla H., Soares A., Solis P., Tarchetti P. Analysis of the influence of self-similar traffic in the performance of real time applications. URL: citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.599.4041&rep=rep1&type=pdf (дата доступа: 15.07.2022).
- Fractal Objects and Self-Similar Processes. URL: archive.physionet.org/tutorials/fmnc/node3.html (дата доступа: 15.07.2022).
- Ruoyu Y., Wang Y. Hurst Parameter for Security Evaluation of LAN Traffic // Information Technology Journal. 2012. no. 11. pp. 269–275.
- Singh Gulshan M.B., Sharma B., Grover M., Gupta P. TSA: Self-Train Self-Test Algorithm // Proceedings of the 2020 IEEE International Conference for Innovation in Technology (INOCON). 2020. pp. 1–5.
- Yu Z., Jiang Z., Tan L., Liu H., Yang Q. Rescaled Range Analysis of Vessel Traffic Flow in the Yangtze River // Proceedings of the 2019 5th International Conference on Transportation Information and Safety (ICTIS). 2019. pp. 1–4.
- Winter P., Lampesberger H., Zeilinger M., Hermann E. On Detecting Abrupt Changes in Network Entropy Time Series // Communications and Multimedia Security. CMS 2011. Lecture Notes in Computer Science. 2011. vol. 7025. pp. 194–205.
- Sharma S., Sahu S.K., Jena S.K. On Selection of Attributes for Entropy Based Detection of DDoS // Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). 2015. pp. 1096–1100.
- Bhuyan M.H., Bhattacharyya D.K., Kalita J.K. Information metrics for low-rate DDoS attack detection: A comparative evaluation // Proceedings of the 2014 Seventh International Conference on Contemporary Computing (IC3). 2014. pp. 80-84.
- Brauckhoff D., Wagner A., May M. FLAME: A Flow-Level Anomaly Modeling Engine // Proceedings of the Workshop on Cyber Security and Test. 2008. pp. 1–6.
- Zhang S.T., Lin X.B., Wu L., Song Y.Q., Liao N.D., Liang Z.H. Network Traffic Anomaly Detection Based on ML-ESN for Power Metering System // Mathematical Problems in Engineering. 2020. vol. 2020. article ID 7219659.
- Radford B.J., Apolonio L.M., Trias A.J., Simpson J.A. Network Traffic Anomaly Detection Using Recurrent Neural Networks. URL: doi.org/10.48550/arXiv.1803.10769 (дата доступа: 15.07.2022).
- Браницкий А.А., Котенко И.В. Анализ и классификация методов обнаружения сетевых атак // Труды СПИИРАН. 2016. № 2 (45). C. 207–244.
- Браницкий А.А., Котенко И.В. Обнаружение сетевых атак на основе комплексирования нейронных, иммунных и нейро-нечетких классификаторов // Информационно-управляющие системы. 2015. № 4 (77). С. 69-77.
- Shaukat K., Luo S., Varadharajan V., Hameed I.A., Xu M. A Survey on Machine Learning Techniques for Cyber Security in the Last Decade // IEEE Access. 2020. vol. 8. pp. 222310–222354.
- Chen W.-H., Hsu S.-H., Shen H.-P. Application of SVM and ANN for intrusion detection // Computers & Operations Research. 2005. vol. 32. no. 10. pp. 2617–2634.
- Hasan M.A.M., Nasser M., Ahmad S., Molla K.I. Feature selection for intrusion detection using random forest // Journal of information security. 2016. vol. 7. no. 03. p. 129.
- Zhang Y., Wang S., Wu L. Spam detection via feature selection and decision tree // Advanced Science Letters. 2012. vol. 5. no. 2. pp. 726–730.
- Su M.-Y. Real-time anomaly detection systems for Denial-of-Service attacks by weighted k-nearest-neighbor classifiers // Expert Systems with Applications. 2011. vol. 38. no. 4. pp. 3492–3498.
- Gers F., Schraudolph N., Schmidhuber J. Learning precise timing with LSTM recurrent networks // Journal of Machine Learning Research. 2002. vol. 3, pp. 115–143.
- Shaukat S., Ali A., Batool A., Alqahtan, F., Khan J.S., Ahmad A.J. Intrusion Detection and Attack Classification Leveraging Machine Learning Technique // Proceedings of the 2020 14th International Conference on Innovations in Information Technology (IIT). 2020. pp. 198–202.
- Nurul A.H., Zaheera Z.A., Puvanasvaran A.P., Zakaria N.A., Ahmad R. Risk assessment method for insider threats in cyber security: A review // International Journal of Advanced Computer Science and Applications (ijacsa). 2018. vol. 9. no. 11. pp.16–19.
- Zhe W.; Wei C., Chunlin L. DoS attack detection model of smart grid based on machine learning method // Proceedings of the 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). 2020. pp. 735–738.
- Karataş G., Akbulut A. Survey on Access Control Mechanisms in Cloud Computing // Journal of Cyber Security and Mobility. 2018. vol. 7. no. 3. pp. 1–36.
- Lopez J., Rubio J. Access control for cyber-physical systems interconnected to the cloud // Comput. Netw. 2018. vol. 134. no. C. pp. 46–54.
- Clincy V., Shahriar H. Web Application Firewall: Network Security Models and Configuration // Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC). 2018, pp. 835–836.
- Visoottiviseth V., Sakarin P., Thongwilai J. Choobanjong T. Signature-based and behavior-based attack detection with machine learning for home IoT devices // Proceedings of the 2020 IEEE Region 10 conference (TEN-CON). 2020. pp. 829-834.
- Amma N.G.B., Selvakumar S., Velusamy R.L. A Statistical Approach for Detection of Denial of Service Attacks in Computer Networks // IEEE Transactions on Network and Service Management. 2020. vol. 17. no. 4. pp. 2511–2522.
Supplementary files
