Graph Attention Network Enhanced Power Allocation for Wireless Cellular System

Cover Page

Cite item

Full Text

Abstract

The importance of an efficient network resource allocation strategy has grown significantly with the rapid advancement of cellular network technology and the widespread use of mobile devices. Efficient resource allocation is crucial for enhancing user services and optimizing network performance. The primary objective is to optimize the power distribution method to maximize the total aggregate rate for all customers within the network. In recent years, graph-based deep learning approaches have shown great promise in addressing the challenge of network resource allocation. Graph neural networks (GNNs) have particularly excelled in handling graph-structured data, benefiting from the inherent topological characteristics of mobile networks. However, many of these methodologies tend to focus predominantly on node characteristics during the learning phase, occasionally overlooking or oversimplifying the importance of edge attributes, which are equally vital as nodes in network modeling. To tackle this limitation, we introduce a novel framework known as the Heterogeneous Edge Feature Enhanced Graph Attention Network (HEGAT). This framework establishes a direct connection between the evolving network topology and the optimal power distribution strategy throughout the learning process. Our proposed HEGAT approach exhibits improved performance and demonstrates significant generalization capabilities, as evidenced by extensive simulation results.

About the authors

S. Qiushi

St. Petersburg State University

Author for correspondence.
Email: st059656@student.spbu.ru
Universitetskiy Av. 35

H. Yang

St. Petersburg State University

Email: hy1186867324@outlook.com
Universitetskiy Av. 35

O. L Petrosian

St. Petersburg State University

Email: o.petrosyan@spbu.ru
Universitetskiy Av. 35

References

  1. Jiang W. Graph-based deep learning for communication networks: A survey. Computer Communications. 2022. vol. 185. pp. 40–54.
  2. Shi Q., Razaviyayn M., Luo Z.Q., He C. An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel. IEEE Transactions on Signal Processing. 2011. vol. 59. no. 9. pp. 4331–4340.
  3. Shen K., Yu W. Fractional programming for communication systems – Part I: Power control and beamforming. IEEE Transactions on Signal Processing. 2018. vol. 66. no. 10. pp. 2616–2630.
  4. Feiten A., Mathar R., Reyer M., Rate and power allocation for multiuser OFDM:An effective heuristic verified by branch-and-bound. IEEE Transactions on Wireless Communications. 2008. vol. 7. no. 1. pp. 60–64.
  5. Sun Q., Wu H., Petrosian O. Optimal Power Allocation Based on MetaheuristicAlgorithms in Wireless Network. Mathematics. 2022. vol. 10(18). no. 3336.
  6. Sun H., Chen X., Shi Q., Hong M., Fu X., Sidiropoulos N.D. Learning to optimize: Training deep neural networks for interference management. IEEE Transactions on Signal Processing. 2018. vol. 66. no. 20. pp. 5438–5453.
  7. Liang F., Shen C., Yu W. and Wu F. Towards optimal power control via ensemblingdeep neural networks. IEEE Transactions on Communications. 2019. vol. 68. no. 3. pp. 1760–1776.
  8. Lee W., Kim M., Cho D.H. Deep learning based transmit power control in underlaid device-to-device communication. IEEE Systems Journal. 2018. vol. 13. no. 3. pp. 2551–2554.
  9. Liao X., Shi J., Li Z., Zhang L., Xia B. A model-driven deep reinforcement learning heuristic algorithm for resource allocation in ultra-dense cellular networks. IEEE Transactions on Vehicular Technology. 2019. vol. 69. no. 1. pp. 983–997.
  10. Shen Y., Shi Y., Zhang J., Letaief K.B. A graph neural network approach for scalable wireless power control. IEEE Globecom Workshops (GC Wkshps). 2019. pp. 1–6.
  11. Chowdhury A., Verma G., Rao C., Swami A., Segarra S. Unfolding WMMSE using graph neural networks for efficient power allocation. IEEE Transactions on Wireless Communications. 2021. vol. 20. no. 9. pp. 6004–6017.
  12. Li B., Swami A., Segarra S. Power allocation for wireless federated learning using graph neural networks. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2022. pp. 5243–5247.
  13. Wang X., Ji H., Shi C., Wang B., Ye Y., Cui P., Yu P.S. Heterogeneous graph attention network. The world wide web conference. 2019. pp. 2022–2032.
  14. Busbridge D., Sherburn D., Cavallo P., Hammerla N.Y. Relational graph attention networks. arXiv preprint. 2019. arXiv:1904.05811.
  15. Gong L., Cheng Q. Exploiting edge features for graph neural networks. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. pp. 9211–9219.
  16. Jiang X., Ji P., Li S. CensNet: Convolution with Edge-Node Switching in Graph Neural Networks. IJCAI. 2019. pp. 2656–2662.
  17. Fu X., Zhang J., Meng Z., King I. Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding. Proceedings of The Web Conference. 2020. pp. 2331–2341.
  18. Zhang X., Zhao H., Xiong J., Liu X., Zhou L., Wei J. Scalable power control/beamforming in heterogeneous wireless networks with graph neural networks. IEEE Global Communications Conference (GLOBECOM). 2021. pp. 01–06.
  19. Guo J., Yang C. Learning power allocation for multi-cell-multi-user systems with heterogeneous graph neural networks. IEEE Transactions on Wireless Communications 2021. vol. 21. no. 2. pp. 884–897.
  20. Khodmi A., Rejeb S.B., Agoulmine N., Choukair Z. A joint power allocation and user association based on non-cooperative game theory in an heterogeneous ultra-dense network. IEEE Access. 2019. vol. 7. pp. 111790–111800.
  21. Challita U., Saad W., Bettstetter C. Interference management for cellular-connected UAVs: A deep reinforcement learning approach. IEEE Transactions on Wireless Communications. 2019. vol. 18. no. 4. pp. 2125–2140.
  22. Nguyen L.D., Tuan H.D., Duong T.Q., Poor H.V. Multi-user regularized zero-forcing beamforming. IEEE Transactions on Signal Processing. 2019. vol. 67. no. 11. pp. 2839–2853.
  23. Li Y., Han S., Yang C. Multicell power control under rate constraints with deep learning. IEEE Transactions on Wireless Communications. 2021. vol. 20. no. 12. pp. 7813–7825.
  24. Wang X., Ji H., Shi C., Wang B., Ye Y., Cui P., Yu P.S. Heterogeneous graph attention network. The world wide web conference. 2019. pp. 2022–2032.
  25. Yang Y., Li D. Nenn: Incorporate node and edge features in graph neural networks. Asian conference on machine learning. 2020. pp. 593–608.
  26. Chen J., Chen H. Edge-featured graph attention network. arXiv preprint. 2021. arXiv:2101.07671.
  27. Kim J., Park J., Noh J., Cho S. Autonomous power allocation based on distributed deep learning for device-to-device communication underlaying cellular network. IEEE access. 2020. vol. 8. pp. 107853–107864.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».