Discrete Time Sequence Reconstruction of a Signal Based on Local Approximation Using a Fourier Series by an Orthogonal System of Trigonometric Functions

Cover Page

Cite item

Full Text

Abstract

The article considers the development of mathematical and algorithmic support for the sample’s reconstruction in problem sections of a discrete sequence of a continuous signal. The work aimed to ensure the reconstruction of lost samples or sections of samples with a non-constant distorted time grid when sampling a signal with a uniform step and at the same time to reduce the computational complexity of digital reconstruction algorithms. The solution to the stated problem is obtained based on the local approximation method. The specific of this method application was the use of two subsequences of samples located symmetrically concerning the reconstructed section of the sequence. The approximating model is a Fourier series on an orthogonal system of trigonometric functions. The optimal solution to the approximation problem is based on the minimum square error criterion. Mathematical equations are obtained for this type of error. They allow us to estimate its value depending on the model order and the samples number in the subsequences used in the reconstruction process. The peculiarity of the mathematical equations obtained in this paper for signal reconstruction is that they do not require the preliminary calculation of the Fourier series coefficients. They provide a direct calculation of the values of reconstructed samples. At the same time, when the number of samples in the subsequences used for reconstruction will be even, it is not necessary to perform multiplication operations. All this made it possible to reduce the computational complexity of the developed algorithm for signal reconstruction. Experimental studies of the algorithm were carried out based on simulation modeling using a signal model that is an additive sum of harmonic components with a random initial phase. Numerical experiments have shown that the developed algorithm provides the reconstruction result of signal samples with a sufficiently low error. The algorithm is implemented as a software module. The operation of the module is carried out on the basis of asynchronous control of the sampling reconstruction process. It can be used as part of metrologically significant software for digital signal processing systems.

About the authors

V. N Yakimov

Samara State Technical University

Email: yvnr@hotmail.com
Molodogvardeyskaya St. 244

References

  1. Madisetti V.K. The Digital Signal Processing Handbook, Second edition: Digital Signal Processing Fundamentals // CRC Press, Taylor and Francis Group. 2010. 904 p.
  2. Денисенко А.Н. Сигналы. Теоретическая радиотехника. Справочное пособие // М: Горячая линия-Телеком, 2005. 704 с.
  3. Oppenheim A.V., Schafer R.W. Discrete-Time Signal Processing: Third edition // Pearson Higher Education. 2010. 1108 p.
  4. Поршнев С.В., Кусайкин Д.В. Восстановление неравномерно дискретизированных сигналов с неизвестными значениями координат узлов временной сетки // Успехи современной радиоэлектроники. 2015. №6. С. 3–35.
  5. Khan N.A., Ali S. Robust Sparse Reconstruction of Signals with Gapped Missing Samples from Multi-Sensor Recordings // Digital Signal Processing. 2022. vol. 123. 103392.
  6. Aceska R., Bouchot J.-L., Li S. Local Sparsity and Recovery of Fusion Frame Structured Signals // Signal Processing. 2020. vol. 174. 107615.
  7. Stankovic L., Stankovic S., Amin M. Missing samples analysis in signals for applications to L-estimation and compressive sensing // Signal Processing. 2014. vol. 94. pp. 401–408.
  8. Aldroubi A., Leonetti C. Non-Uniform Sampling and Reconstruction from Sampling Sets with Unknown Jitter // Sampling Theory in Signal and Image Processing. 2008. vol. 7. no. 2. pp. 187–195.
  9. Nordio A., Chiasserini C-F., Viterbo E. Signal Reconstruction Errors in Jittered Sampling // IEEE Transactions on signal Processing. 2009. vol. 57. no. 12. pp. 4711–4718.
  10. Maymon S. Oppenheim A.V. Sinc Interpolation of Nonuniform Samples // IEEE Transactions on Signal Processing. 2011. vol. 59. no. 10. pp. 4745–4758.
  11. Andras I., Dolinsky P., Michaeli L., Saliga J. A Time Domain Reconstruction Method of Randomly Sampled Frequency Sparse Signal // Measurement. 2018. vol. 127. pp. 68–77.
  12. Якимов В.Н., Машков А.В. Знаковый алгоритм анализа спектра амплитуд и восстановления гармонических составляющих сигналов в условиях присутствия некоррелированных фоновых шумов // Научное приборостроение. 2017. Т. 27. № 2. С. 83–90.
  13. Bilinskis I. Digital Alias-free Signal Processing // Wiley. 2007. 454 p.
  14. Lu Y. M., Vetterli M. Multichannel Sampling with Unknown Gains and Offsets: A Fast Reconstruction Algorithm // Proc. Allerton Conference on Communication, Control and Computing. Monticello. 2010.
  15. Sbaiz L., Vandewalle P., Vetterli M. Groebner Basis Methods for Multichannel Sampling with Unknown Offsets // Applied and Computational Harmonic Analysis. 2008. vol. 25. no. 3. pp. 277–294.
  16. Liu N., Tao R., Wang R., Deng Y., Li N., Zhao S. Signal Reconstruction from Recurrent Samples in Fractional Fourier Domain and Its application in Multichannel SAR // Signal Processing. 2017. vol. 131. pp. 288–299.
  17. Allen R.L., Mills D.W. Signal Analysis: Time, Frequency, Scale, and Structure // IEEE Press (Wiley-Interscience). 2004. 966 p.
  18. Sejdic E., Orovic I., Stankovic S. Compressive sensing meets time-frequency: An overview of recent advances in time-frequency processing of sparse signals // Digital Signal Processing. 2018. vol. 77. pp. 22–35.
  19. Teke O., Gurbuz A.C., Arikan O. A robust compressive sensing based technique for reconstruction of sparse radar scenes // Digital Signal Processing. 2014. vol. 27, pp. 23-32.
  20. Жукова Н.А., Соколов И.С. Метод восстановления структуры группового телеметрического сигнала на основе графовой модели // Труды СПИИРАН. 2010. Вып. 13. C. 45–66.
  21. Khan N.A., Ali S. Reconstruction of gapped missing samples based on instantaneous frequency and instantaneous amplitude estimation // Signal Processing. 2022. vol. 193. no. 108429.
  22. Dokuchaev N. On Recovery of Discrete Time Signals from Their Periodic Subsequences // Signal Processing. 2019. vol. 162. pp. 180–188.
  23. Annaby M.H., Al-Abdi I.A., Abou-Dina M.S., Ghaleb A.F. Regularized Sampling Reconstruction of Signals in the Linear Canonical Transform Domain // Signal Processing. 2022. vol. 198. 108569.
  24. Yue C., Liang J., Qu B., Han Y., Zhu Y., Crisalle O.D. A Novel Multiobjective Optimization Algorithm for Sparse Signal Reconstruction // Signal Processing. 2020. vol. 167. 107292.
  25. Wijenayake C., Scutts J., Ignjatovic A. Signal recovery algorithm for 2-level amplitude sampling using chromatic signal approximations // Signal Processing. 2018. vol. 153. pp. 143–152.
  26. Катковник В.Я. Непараметрическая идентификация и сглаживание данных: метод локальной аппроксимации // М.: Главная редакция физико-математической литературы. 1985. 336 с.
  27. Толстов Г.П. Ряды Фурье // М.: Наука. 1980. 381 c.
  28. Brandt S. Data Analysis. Statistical and Computational Methods for Scientists and Engineers // Springer. 2014. 523 p.
  29. Bernatz R. Fourier Series and Numerical Methods for Partial Differential Equations // Wiley. 2010. 318 p.
  30. Edwards R.E. Fourier Series: A Modern Introduction. vol. 1 //Springer-Verlag. 1979. 224 p.
  31. Yakimov V.N., Gorbachev O.V. Firmware of the Amplitude Spectrum Evaluating System for Multicomponent Processes // Instruments and Experimental Techniques. 2013. vol. 56. no. 5. pp. 540–545.
  32. Yakimov V.N., Zaberzhinskij B.E., Mashkov A.V., Bukanova Yu.V. Multi-threaded Approach to Software High-speed Algorithms for Spectral Analysis of Multi-component Signals // XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP). 2019. IEEE. pp. 698–701.
  33. ГОСТ 31191.1-2004 (ИСО 2631-1:1997) Вибрация и удар. Измерение общей вибрации и оценка ее воздействия на человека. Часть I. Общие требования. Введ. 2008-07-01. М.: Стандартинформ, 2010. 25 с.
  34. ГОСТ 55855-2013. Автомобильные транспортные средства. Методы измерения и оценки общей вибрации. Введ. 2014-09-01. М.: Стандартинформ, 2014. 21 с.
  35. ГОСТ ИСО 10326-1-2002. Вибрация. Оценка вибрации сидений транспортных средств по результатам лабораторных испытаний. Часть 1. Общие требования. Введ. 2007-11-01. М.: Стандартинформ, 2017. 12 с.
  36. ГОСТ ИСО 8002-99. Вибрация. Вибрация наземного транспорта. Представление результатов измерений. Введ. 2001-01-01. Минск: Межгос. совет по стандартизации, метрологии и сертификации, 2000. 16 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».