Approach to Software Integration of Heterogeneous Sources of Medical Data Based on Microservice Architecture
- Authors: Yusupova N.I1, Vorobeva G.R1, Zulkarneev R.K.2
-
Affiliations:
- Ufa State Aviation Technical University
- Bashkir State Medical University of the Ministry of Health of Russia
- Issue: Vol 21, No 5 (2022)
- Pages: 881-915
- Section: Artificial intelligence, knowledge and data engineering
- URL: https://journals.rcsi.science/2713-3192/article/view/267178
- DOI: https://doi.org/10.15622/ia.21.5.2
- ID: 267178
Cite item
Full Text
Abstract
About the authors
N. I Yusupova
Ufa State Aviation Technical University
Email: yussupova@ugatu.ac.ru
Karl Marx St. 12
G. R Vorobeva
Ufa State Aviation Technical University
Email: gulnara.vorobeva@gmail.com
Karl Marx St. 12
R. Kh Zulkarneev
Bashkir State Medical University of the Ministry of Health of Russia
Email: zurustem@mail.ru
Karl Marx St. 9/1
References
- Snyder M., Zhou W. Big data and health // The Lancet. Digital Health. 2019. Vol. 1, iss. 6. P. E252-E-254
- Комолов А.В. Обзор медицинских стандартов передачи электронной информации // Аллея науки. 2019. Т. 2. № 2(29). С. 909-913
- Martínez-Costa C., Schulz S. HL7 FHIR: Ontological Reinterpretation of Medication Resources // Studies in Health Technology and Informatics. 2017. No. 235. P. 451– 455. doi: 10.3233/978-1-61499-753-5-451.
- Mukhiya S., Rabbi F., Pun V. [et al.]. A GraphQL approach to Healthcare Information Exchange with HL7 FHIR // Procedia Computer Science. 2019. No. 160. P.338-345. doi: 10.1016/j.procs.2019.11.082.
- Hong N., Wang K., Wu S. [et al.] An Interactive Visualization Tool for HL7 FHIR Specification Browsing and Profiling // Journal of Healthcare Informatics Research. 2019. No. 3. doi: 10.1007/s41666-018-0043-8.
- Елоев М.С. Опыт внедрения медицинской информационной системы в многопрофильном амбулаторно-поликлиническом учреждении // Военно-медицинский журнал. 2014. Т. 335. № 9. С. 4-13
- Alqudah A., Al-Emran M., Shaalan K. Medical data integration using HL7 standards for patient’s early identification // PLOS ONE. 2021. No. 16. P. e0262067. doi: 10.1371/journal.pone.0262067.
- Brogan J., del Pilar M., López A. [et al.] Scalable data systems require creating a culture of continuous learning // EBioMedicine Home (Part of Lancet Discovery Science). 2021. Vol. 74, P. 103738, doi: https://doi.org/10.1016/j.ebiom.2021.103738
- Prakash C., Amit Sh. National Institute of Malaria Research-Malaria Dashboard (NIMR-MDB): A digital platform for analysis and visualization of epidemiological data // The Lancet Regional Health. 2022. P. 100030.
- Balicer R., Arnon A. Digital health nation: Israel's global big data innovation hub // The Lancet. 2017. Vol. 389, iss. 10088, p. 2451-2453. doi: https://doi.org/10.1016/S0140-6736(17)30876-0
- Grabner M, Molife C, Wang L, Winfree K, Cui Z, Cuyun Carter G, Hess L. Data Integration to Improve Real-world Health Outcomes Research for Non–Small Cell Lung Cancer in the United States: Descriptive and Qualitative Exploration // JMIR Cancer 2021;7(2):e23161. doi: 10.2196/23161
- Mate S, Köpcke F, Toddenroth D, Martin M, Prokosch H-U, Bürkle T,et al. Ontology-Based Data Integration between Clinical and Research Systems // PLoS ONE. 2015. No. 10(1). P. e0116656. PMID: 25588043.
- Lin YL, Trbovich P, Kolodzey L, Nickel C, Guerguerian A. Association of Data Integration Technologies With Intensive Care Clinician Performance: A Systematic Review and Meta-analysis // JAMA Netw Open. 2019. No. 2(5). P. e194392. doi: 10.1001/jamanetworkopen.2019.4392.
- Scheurwegs E., Luyckx K. [et al.]. Data integration of structured and unstructured sources for assigning clinical codes to patient stays // Journal of the American Medical Informatics Association. 2016. Vol. 23, Iss. e1. P. e11–e19, https://doi.org/10.1093/jamia/ocv115
- Martínez-García M., Hernández-Lemus E. Data Integration Challenges for Machine Learning in Precision Medicine // Front. Med. 2022. No. 8:784455. doi: 10.3389/fmed.2021.784455.
- Di Stefano A., La Corte A., Scatá M. Health Mining: a new data fusion and integration paradigm // Proceedings of CIBB. 2014. Vol. 1. P. 98-107.
- Kamdar M.R., Fernández J.D., Polleres A. [et al.] Enabling Web-scale data integration in biomedicine through Linked Open Data // Digit. Med. 2019. No. 2. P. 90. https://doi.org/10.1038/s41746-019-0162-5
- Dhayne H., Haque R., Kilany R., Taher Y. In Search of Big Medical Data Integration Solutions. A Comprehensive Survey // IEEE Access. 2019. PP. 1-10. doi: 10.1109/ACCESS.2019.2927491.
- Kük E., Erel-Ozcevik M. Access protocol aware controller design for eMBB traffic in SD-CDN // Computer Networks. 2022. No. 205. P. 08686. doi: 10.1016/j.comnet.2021.108686.
- Zerwas J., Poese I., Schmid S., Blenk A. On the Benefits of Joint Optimization of Reconfigurable CDN-ISP Infrastructure // IEEE Transactions on Network and Service Management. 2021. PP. 105-112. doi: 10.1109/TNSM.2021.3119134.
- Vorobev, A.; Soloviev, A.; Pilipenko, V.; Vorobeva, G.; Sakharov, Y. An Approach to Diagnostics of Geomagnetically Induced Currents Based on Ground Magnetometers Data // Appl. Sci. 2022, 12, 1522. https://doi.org/10.3390/app12031522
- Choi, B. Python Network Automation Labs: cron and SNMPv3. In: Introduction to Python Network Automation. Apress, Berkeley, CA, 2021.doi: 10.1007/978-1-4842-6806-3_15.
- Vorobev, A.V., Pilipenko, V.A., Enikeev, T.A., Vorobeva, G.R. Geoinformation system for analyzing the dynamics of extreme geomagnetic disturbances from observations of ground stations // Computer Optics. 2020. No. 44(5). P. 782–790.
- Barlas K., Stefaneas P. An Algebraic Specification / Schema for JSON // Journal of Engineering Research and Sciences. 2022. No. 1. doi: 10.55708/js0105025.
- Rajendran L., Veilumuthu R. An Efficient Distributed Model for XMLised Blob Data Generation // International Journal of Computer Applications. 2011. No. 22. doi: 10.5120/2561-3519.
- Yang Z., Jiang K., Lou M. [et al.] Defining health data elements under the HL7 development framework for metadata management // Journal of Biomedical Semantics. 2022. No. 13. doi: 10.1186/s13326-022-00265-5.
- Rahmatulloh A., Gunawan R., Nursuwars F. Performance comparison of signed algorithms on JSON Web Token // IOP Conference Series: Materials Science and Engineering. 2019. No. 550. P. 012023. doi: 10.1088/1757-899X/550/1/012023.
- Beltran V. Characterization of web single sign-on protocols // IEEE Communications Magazine. 2016. No. 54. P. 24-30. doi: 10.1109/MCOM.2016.7514160.
- Jones M., Bradley J., Sakimura N., JSON Web Token (JWT)., RFC 7519, doi: 10.17487/RFC7519, May 2015, https://www.rfc-editor.org/info/rfc7519.
- Cai Sh., Chen K., Liu M. [et al.] Garbage collection and data recovery for N2DB // Tsinghua Science and Technology. 2022. No. 27. P. 630-641. doi: 10.26599/TST.2021.9010016.
- Garcia A., May D., Nutting E. Integrated Hardware Garbage Collection // ACM Transactions on Embedded Computing Systems. 2021. No. 20. P. 1-25. doi: 10.1145/3450147.
- Zhang Q., Bernstein P., Berger D., Chandramouli B. Redy: remote dynamic memory cache // Proceedings of the VLDB Endowment. 2021. No. 15. P. 766-779. doi: 10.14778/3503585.3503587.
- Tserpes K., Pateraki M., Varlamis I. Strand: scalable trilateration with Node.js // Journal of Cloud Computing. 2019. No. 8. doi: 10.1186/s13677-019-0142-y.
Supplementary files
