Randomized Machine Learning and Forecasting of Nonlinear Dynamic Models Applied to SIR Epidemiological Model

Cover Page

Cite item

Full Text

Abstract

We propose an approach to estimation of the parameters of non-linear dynamic models using the concept of Randomized Machine Learning (RML), based on the transition from deterministic models to random ones (with random parameters), followed by estimation of the probability distributions of parameters and noises on real data. The main feature of this method is its efficiency in conditions of a small amount of real data. The paper considers models formulated in terms of ordinary differential equations, which are converted to a discrete form for setting and solving the problem of entropy optimization. The application of the proposed approach is demonstrated on the problem of predicting the total number of infected COVID-19 using adynamic SIR epidemiological model. To do this, we construct a randomized SIR model (R-SIR) with one parameter, the entropy-optimal estimate of which is realized by its probability density function, as well as the probability density functions of the measurement noise at the points where training is performed. Next, the technique of randomized prediction with noise filtering is applied, based on the generation of the corresponding distributions and the construction of an ensemble of predictive trajectories with the calculation of the trajectory averaged over the ensemble. The paper implements a computational experiment using real operational data on the infection cases in the form of a comparative study with a well-known method for estimating model parameters based on the least squares method. The results obtained in the experiment demonstrate a significant decrease in the mean absolute percentage error (MAPE) with respect to real observations in the forecast interval, which shows the efficiency of the proposed method and its effectiveness in problems of the type considered in the work.

About the authors

A. Yu Popkov

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Email: apopkov@isa.ru
Vavilov St. 44-2

Y. A Dubnov

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Email: yury.dubnov@phystech.edu
Vavilov St. 44-2

Y. S Popkov

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Email: popkov@isa.ru
Vavilov St. 44-2

References

  1. Попков Ю.С., Дубнов Ю.А., Попков А.Ю. Прогнозирование развития эпидемии COVID-19 в странах Европейского союза с использованием энтропийно-рандомизированного подхода // Информатика и автоматизация, 2021, Т. 20, №5, c. 1010-1033, https://doi.org/10.15622/ia.20.5.1.
  2. van den Driessche P. Mathematical Epidemiology / ed. by Brauer F., van den Driessche P., Wu J. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. Vol. 1945 of Lecture Notes in Mathematics. P. 147–157. https://doi.org/10.1007/978-3-540-78911-6.
  3. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики.— М.:Юнити, 1998.
  4. Лагутин М.Б. Наглядная математическая статистика. — Бином. Лаб. знаний, 2013.
  5. Боровков А.А. Математическая статистика. — М.:Наука, 1984.
  6. Bishop C. Pattern Recognition and Machine Learning (Information Science and Statistics), 2006. Springer, New York, 2006.
  7. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data mining, Inference, and Prediction. Springer New York, 2009.
  8. Мерков А.Б. Распознавание образов. Введение в методы статистического обучения. М. : URSS, 2010.
  9. Попков Ю.С., Попков А.Ю., Дубнов Ю.А. Рандомизированное машинное обучение при ограниченных наборах данных: от эмпирической вероятности к энтропийной рандомизации. — М.: ЛЕНАНД, 2019. ISBN: 978-5-9710-5908-0.
  10. Попков Ю.С., Дубнов Ю.А. Энтропийно-робастное рандомизированное прогнозирование при малых объемах ретроспективных данных // Автоматика и телемеханика. 2016. № 5. С. 109–127.
  11. Попков А.Ю. Рандомизированное машинное обучение нелинейных моделей с применением к прогнозированию развития эпидемического процесса // Автоматика и телемеханика. 2021. № 6. С. 149–168. https://doi.org/10.31857/S0005231021060064.
  12. Popkov Y.S., Dubnov Y.A., Popkov A.Y. Introduction to the Theory of Randomized Machine Learning // Learning Systems: From Theory to Practice / ed. by Sgurev V., Piuri V., Jotsov V. Cham: Springer International Publishing, 2018. P. 199–220. ISBN: 978-3-319-75181-8. https://doi.org/10.1007/978-3-319-75181-8_10.
  13. Попков Ю.С., Попков А.Ю., Дубнов Ю.А. Элементы рандомизированного прогнозирования и его применение для предсказания суточной электрической нагрузки энергетической системы // Автоматика и телемеханика. 2020. С. 148–172. https://doi.org/10.1134/S0005231019070107.
  14. Kermack W.O., McKendrick A.G. Contributions to the Mathematical Theory of Epidemics // Proceedings of the Royal Society. 1927. Vol. 115A. P. 700–721.
  15. Muller G.R. Zeitschrift f¨ur allgemeine Mikrobiologie / In: The Population Dynamics of Infectious Diseases: Theory and Applications. 368 S., 135 Abb., 104 Tab. London-New York, Chapman and Hall, 1984, Vol. 24, no. 2. pp. 76–76. https://doi.org/10.1002/jobm.19840240203.
  16. Hethcote H.W. Three Basic Epidemiological Models // Applied Mathematical Ecology. Springer Berlin Heidelberg, 1989. pp. 119–144. https://doi.org/10.1007/978-3-642-61317-3_5.
  17. Peng L., Yang W., Zhang D., Zhuge C., Hong L. Epidemic analysis of COVID-19 in China by dynamical modeling // arXiv, 2020. 10.48550/ARXIV.2002.06563.
  18. Yang W., Zhang D., Peng L., Zhuge C., Hong L. Rational evaluation of various epidemic models based on the COVID-19 data of China // Epidemics, 2021. Vol. 37. p. 100501. https://doi.org/10.1016/j.epidem.2021.100501.
  19. Cheng C., Zhang D., Dang D., Geng J., Zhu P., Yuan M., Liang R., Yang H., Jin Y., Xie J., Chen S., Duan G. The incubation period of COVID-19: a global meta-analysis of 53 studies and a Chinese observation study of 11 545 patients // Infectious Diseases of Poverty, 2021. Vol. 10, no. 1. https://doi.org/10.1186/s40249-021-00901-9.
  20. Huang S., Li J., Dai C., Tie Z., Xu J., Xiong X., Hao X., Wang Z., Lu C. Incubation period of coronavirus disease 2019: New implications for intervention and control // International Journal of Environmental Health Research, 2021. P. 1–9. https://doi.org/10. 1080/09603123.2021.1905781.
  21. Li Q. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus — Infected Pneumonia // New England Journal of Medicine, 2020. Vol. 382, no. 13. P. 1199–1207. https://doi.org/10.1056/nejmoa2001316.
  22. Nie X. et al. Epidemiological Characteristics and Incubation Period of 7015 Confirmed Cases With Coronavirus Disease 2019 Outside Hubei Province in China // The Journal of Infectious Diseases, 2020. Vol. 222, no. 1. pp. 26–33. https://doi.org/10.1093/infdis/jiaa211.
  23. Guidotti E., Ardia D. COVID-19 Data Hub // Journal of Open Source Software. 2020. Vol. 5, no. 51. P. 2376. https://doi.org/10.21105/joss.02376.
  24. COVID-19 Data Hub. https://www.covid19datahub.io. 2021. Accessed: 2022-06-20.
  25. Флах П. Наука и искусство построения алгоритмов, которые извлекают знания из данных. ДМК Пресс, 2015.
  26. Rubinstein R.Y., Kroese D.P. Simulation and the Monte Carlo method. John Wiley & Sons, 2007. Vol. 707.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».