Polynomial Approximations for Several Neural Network Activation Functions
- Authors: Marshalko G.B1, Trufanova J.A1
-
Affiliations:
- Technical committee for standardization "Cryptography and security mechanisms"
- Issue: Vol 21, No 1 (2022)
- Pages: 161-180
- Section: Artificial intelligence, knowledge and data engineering
- URL: https://journals.rcsi.science/2713-3192/article/view/266337
- DOI: https://doi.org/10.15622/ia.2022.21.6
- ID: 266337
Cite item
Full Text
Abstract
About the authors
G. B Marshalko
Technical committee for standardization "Cryptography and security mechanisms"
Email: marshalko_gb@tc26.ru
Otradnaya St. 2B-1
J. A Trufanova
Technical committee for standardization "Cryptography and security mechanisms"
Email: trufanova_ua@tc26.ru
Otradnaya St. 2B-1
References
- Pitropakis N., Panaousis E., Giannetsos T., Anastasiadis E., Loukas G. A taxonomy and survey of attacks against machine learning // Comput. Sci. Rev. 2019. Vol. 34. pp. 100 – 199.
- Dowlin N., Gilad-Bachrach R., Laine K., Lauter K., Naehrig M.,Wernsing J. CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy // Proceedings of the 33rd International Conference on Machine Learning (ICML). 2016. pp. 201 – 210.
- Hesamifard, E., Takabi, H., Ghasemi, M. CryptoDL: Deep neural networks over encrypted data // arXiv preprint:1711.05189. 2017.
- Juvekar C., Vaikuntanathan V., and Chandrakasan A. GAZELLE: A low latency framework for secure neural network inference // 27th USENIX Security Symposium. USENIX Association. 2018. pp. 1651—1669.
- Brakerski Z., Gentry C., Vaikuntanathan V. (Leveled) Fully Homomorphic Encryption Without Bootstrapping // ACM Trans. Comput. Theory. vol. 6. 2014. pp. 13:1–13:36.
- Cheon J.H., Kim A., Kim M., Song Y. Homomorphic encryption for arithmetic of approximate numbers // Proceedings of the International Conference on the Theory and Applications of Cryptology and Information Security. 2017. pp. 409 – 437.
- Crawford L. H., Gentry C., Halevi S., Platt D., and Shoup V. Doing realwork with FHE: The case of logistic regression // 6th Workshop Encrypted Comput. Appl. Homomorphic Cryptogr. (WAHC), New York, USA. 2018. pp. 1–12.
- Ghodsi Z., Gu T., Garg S. Safetynets: Verifiable execution of deep neural networks on an untrusted cloud // Advances in Neural Information Processing Systems. 2017. pp. 4672—4681.
- Ramy E.A., Jinhyun S., Salman Avestimehr. On Polynomial Approximations for Privacy-Preserving and Verifiable ReLU Networks // arXiv preprint:2011.05530, 2020.
- Репозиторий проекта CryptoDL URL: https://github.com/inspire-lab/CryptoDL (дата обращения: 01.09.2021).
- Lee J., Lee E., Lee J.-W., Kim Y., Kim Y.-S., No J.-S. Precise Approximation of Convolutional Neural Networks for Homomorphically Encrypted Data // arXiv preprint:2105.10879, 2021.
- Krogh F.T. Efficient Algorithms for Polynomial Interpolation and Numerical Differentiation, Math. Comput. 1970. vol. 24. no. 109. pp. 185 – 190.
- Молчанов И.Н. Машинные методы решения прикладных задач. Алгебра, приближение функций. Киев: Наук. думка, 1987. С. 288.
- Taylor J.R. An introduction to error analysis, University Science Books Mill Valley, California, 1982. P. 344.
- LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition // Proceedings of the IEEE. 1998. vol. 86, no. 11. pp. 2278–2324.
Supplementary files
