Cyberattack Detection in Vehicles using Characteristic Functions, Artificial Neural Networks, and Visual Analysis

Cover Page

Cite item

Full Text

Abstract

The connectivity of autonomous vehicles induces new attack surfaces and thus the demand for sophisticated cybersecurity management. Thus, it is important to ensure that in-vehicle network monitoring includes the ability to accurately detect intrusive behavior and analyze cyberattacks from vehicle data and vehicle logs in a privacy-friendly manner. For this purpose, we describe and evaluate a method that utilizes characteristic functions and compare it with an approach based on artificial neural networks. Visual analysis of the respective event streams complements the evaluation. Although the characteristic functions method is an order of magnitude faster, the accuracy of the results obtained is at least comparable to those obtained with the artificial neural network. Thus, this method is an interesting option for implementation in in-vehicle embedded systems. An important aspect for the usage of the analysis methods within a cybersecurity framework is the explainability of the detection results.

About the authors

Y. Chevalier

Université de Toulouse

Author for correspondence.
Email: yannick.chevalier@irit.fr
route de Narbonne

F. Fenzl

Fraunhofer Institute for Secure Information Technology

Email: florian.fenzl@sit.fraunhofer.de
Rheinstrasse 75

M. V Kolomeets

St Petersburg Federal Research Center of the Russian Academy of Sciences

Email: guardeecwalker@gmail.com
14th line of V.O. 39

R. Rieke

Fraunhofer Institute for Secure Information Technology

Email: roland.rieke@sit.fraunhofer.de
Rheinstrasse 75

A. A Chechulin

St Petersburg Federal Research Center of the Russian Academy of Sciences

Email: andreych@bk.ru
14th line of V.O. 39

K Kraus

Fraunhofer Institute for Secure Information Technology

Email: christoph.krauss@sit.fraunhofer.de
Rheinstrasse 75

References

  1. Muller-Quade J., Backes M., Buxmann P., Eckert C., Holz T. et al. Cybersecurity research: Challenges and course of action. Tech. rep., Karlsruher Institut fur Technologie (KIT). 2019.
  2. Miller C., Valasek C. Remote exploitation of an unaltered passenger vehicle. Tech. rep., IOActive Labs. August 2015.
  3. UN Regulation No. 155 [Uniform provisions concerning the approval of vehicles with regards to cyber security and cyber security management system]. Available at: www.eurlex.europa.eu/eli/reg/2021/387/ojOnline. (accessed 29-Apr-2021).
  4. Chevalier Y., Rieke R., Fenzl F., Chechulin A., Kotenko I. Ecu-secure: Characteristic functions for in-vehicle intrusion detection. Proceedings of the International Symposium on Intelligent and Distributed Computing. 2019. pp. 495–504.
  5. Hacking and Countermeasure Research Lab (HCRL). [Car-Hacking Dataset for the intrusion detection]. Available at: http://ocslab.hksecurity.net/Datasets/CAN-intrusiondataset. (accessed 28-Jun-2018).
  6. Berger I., Rieke R., Kolomeets M., Chechulin A., Kotenko I. Comparative study of machine learning methods for in-vehicle intrusion detection. Proceedings of the ESORICS 2018 International Workshops, CyberICPS 2018 and SECPRE 2018, Barcelona, Spain, September 6-7, 2018, Revised Selected Papers. 2019. vol. 11387. pp. 85–101.
  7. Verma M., Iannacone M., Bridges R., Hollifield S., Kay B. Combs F. Road: The real ORNL automotive dynamometer controller area network intrusion detection dataset (with a comprehensive can ids dataset survey & guide. ArXiv preprint arXiv:2012.14600. 2020.
  8. Studnia I., Nicomette V., Alata E., Deswarte Y., Kaˆaniche M., Laarouchi Y. Security of embedded automotive networks: state of the art and a research proposal. Proceedings of the SAFECOMP 2013 - Workshop CARS of the 32nd International Conference on Computer Safety, Reliability and Security. 2013.
  9. Wolf M., Weimerskirch A., Paar C. Security in Automotive Bus Systems. Proceedings of the Workshop on Embedded Security in Cars. 2014. pp. 1–13.
  10. ENISA Cyber security and resilience of smart cars. Tech. rep., ENISA. 2016.
  11. Metzker E. Reliably detecting and defending against attacks. Available at: https://assets.vector.com/cms/content/know-how/_technicalarticles/ Security_Intrusion_Detection_AutomobilElektronik_202003_PressArticle_EN.pdf. (accessed 28-Apr-2021).
  12. Choi W., Joo K., Jo H., Park M., Lee D. Voltageids: Low-level communication characteristics for automotive intrusion detection system. IEEE Transactions on Information Forensics and Security. 2018. vol. 13. pp. 2114–2129.
  13. Cho K., Shin K. Fingerprinting electronic control units for vehicle intrusion detection. Proceedings of the 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016. 2016. pp. 911–927.
  14. Larson U., Nilsson D., Jonsson E. An approach to specification-based attack detection for in-vehicle networks. Proceedings of the Intelligent Vehicles Symposium, 2008 IEEE. 2008. pp. 220–225.
  15. Hoppe T., Kiltz S., Dittmann J. Security threats to automotive CAN networks – practical examples and selected short-term countermeasures. Reliability Engineering & System Safety. 2011. vol. 96. pp. 235–248.
  16. M¨uter M., Asaj N. Entropy-based anomaly detection for in-vehicle networks. Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV). 2011. pp. 1110–1115.
  17. Studnia I., Alata E., Nicomette V., Kaaniche M., Laarouchi Y. A language-based intrusion detection approach for automotive embedded networks. Proceedings of the 21st IEEE Pacific Rim International Symposium on Dependable Computing (PRDC 2015). 2014. pp. 1–12.
  18. Song H., Kim H., Kim H. Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network. Proceedings of the 2016 international conference on information networking (ICOIN). 2016. vol. 3. pp. 63–68.
  19. Wei Z., Yang Y., Rehana Y., Wu Y., Weng J., Deng R. IoVShield: An Efficient Vehicular Intrusion Detection System for Self-driving. Proceedings of the International Conference on Information Security Practice and Experience. 2017. pp. 638–647.
  20. Rieke R., Seidemann M., Talla E., Zelle D., Seeger B. Behavior analysis for safety and security in automotive systems. Proceedings of the Parallel, Distributed and Network-Based Processing (PDP), IEEE Computer Society. 2017. pp. 381–385.
  21. Levi M., Allouche Y., Kontorovich A. Advanced analytics for connected cars cyber security. Proceedings of the 87th Vehicular Technology Conference (VTC Spring), IEEE. 2017. vol. abs/1711.01939.
  22. Narayanan S., Mittal S., Joshi A. Obd securealert: An anomaly detection system for vehicles. Proceedings of the IEEE Workshop on Smart Service Systems (SmartSys 2016). 2016. pp. 1–7.
  23. Theissler A. Anomaly detection in recordings from in-vehicle networks. Proceedings of Big Data Applications and Principles First International Workshop, BIGDAP 2014. 2014. vol. 23. p. 26.
  24. Kang M., Kang J. A novel intrusion detection method using deep neural network for in-vehicle network security. Proceedings of the 83rd Vehicular Technology Conference (VTC Spring), IEEE. 2016. pp. 1–5.
  25. Marchetti M., Stabili D. Anomaly detection of CAN bus messages through analysis of ID sequences. Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV). 2017. pp. 1577–1583.
  26. Chockalingam V., Larson I., Lin D., Nofzinger S. Detecting attacks on the CAN protocol with machine learning. Annu EECS. 2016. vol. 558. no.7.
  27. Taylor A., Leblanc S., Japkowicz N. Probing the limits of anomaly detectors for automobiles with a cyber attack framework. IEEE Intelligent Systems. 2018. vol. 33. no. 2. pp. 54–62.
  28. Al-Jarrah O., Maple C., Dianati M., Oxtoby D., Mouzakitis A. Intrusion detection systems for intra-vehicle networks: A review. IEEE Access. 2019. vol. 7. pp. 21266–21289.
  29. Kolomeets M., Chechulin A., Kotenko I. Visual analysis of CAN bus traffic injection using radial bar charts. Proceedings of the 1st IEEE International Conference on Industrial Cyber-Physical Systems (ICPS-2018). 2018. pp. 841–846.
  30. Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S., Irving G., Isard M., et al. Tensorflow: A system for large-scale machine learning. Proceedings of the 12th USENIX symposium on operating systems design and implementation (OSDI 16). 2016. pp. 265–283.
  31. Chollet F. Keras. Available at: https://github.com/fchollet/keras. (accessed 28-Apr-2021).
  32. Kingma D., Ba J. Adam: A method for stochastic optimization. ArXiv preprint arXiv:1412.6980. 2014.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».