Fast pupil tracking based on the study of a boundary-stepped image model and multidimensional optimization Hook-Jives method

Cover Page

Cite item

Full Text

Abstract

A new fast method for pupil detection and eyetracking real time is being developed based on the study of a boundary-step model of a grayscale image by the Laplacian-Gaussian operator and finding a new proposed descriptor of accumulated differences (point identifier), which displays a measure of the equidistance of each point from the boundaries of some relative monotonous area (for example, the pupil of the eye). The operation of this descriptor is based on the assumption that the pupil in the frame is the most rounded monotonic region with a high brightness difference at the border, the pixels of the region should have an intensity less than a predetermined threshold (but the pupil may not be the darkest region in the image). Taking into account all of the above characteristics of the pupil, the descriptor allows achieving high detection accuracy of its center and size, in contrast to methods based on threshold image segmentation, based on the assumption of the pupil as the darkest area, morphological methods (recursive morphological erosion), correlation or methods that investigate only the boundary image model (Hough transform and its variations with two-dimensional and three-dimensional parameter spaces, the Starburst algorithm, Swirski, RANSAC, ElSe). The possibility of representing the pupil tracking problem as a multidimensional unconstrained optimization problem and its solution by the Hook-Jeeves non-gradient method, where the function expressing the descriptor is used as the objective function, is investigated. In this case, there is no need to calculate the descriptor for each point of the image (compiling a special accumulator function), which significantly speeds up the work of the method. The proposed descriptor and method were analyzed, and a software package was developed in Python 3 (visualization) and C ++ (tracking kernel) in the laboratory of the Physics and Mathematics Faculty of Kamchatka State University of Vitus Bering, which allows illustrating the work of the method and tracking the pupil in real time.

About the authors

Y. V Grushko

Kamchatka State University named after Vitus Bering

Email: neuralpill@gmail.com
Pogranichnaya St. 4

R. I Parovik

Kamchatka State University named after Vitus Bering

Email: romano84@mail.ru
Pogranichnaya St. 4

References

  1. Masrori P., Van Damme P. Amyotrophic lateral sclerosis: a clinical review. // European journal of neurology. 2020. vol. 27. pp. 1918-1929.
  2. Yang Zheng, Fu Hong, Li Rim, Lo Wai-Lun, Chi Zheru, Feng David, Song Zongxi, Wen Desheng. // Intelligent Evaluation of Strabismus in Videos Based on an Automated Cover Test. Applied Sciences. 2019.
  3. Swirski. L. Bulling. A. Dodgson. N. Robust real-time pupil tracking in highly off-axis images. // Proceedings of the Symposium on Eye Tracking Research & Applications (ETRA). 2012. pp. 173–176.
  4. Utaminingrum Fitri, Prasetya Renaldi, Arum Sari Yuita. Image Processing For Rapidly Eye Detection Based On Robust Haar Sliding Window. // International Journal of Elec-trical and Computer Engineering. 2017. vol. 07.
  5. Durna Yilmaz, Ari Fikret. Design of a Binocular Pupil and Gaze Point Detection System Utilizing High Definition Images. // Applied Sciences. 2017. vol. 7. 498.
  6. Грушко Ю.В. Аппаратно-программный комплекс аугментативной системы коммуникации на основе технологии Eyetracking. // Вестник КРАУНЦ. 2019. № 27:2. C. 55–73.
  7. Bonteanu Petronela, Cracan Arcadie, Bonteanu Gabriel, Bozomitu Radu. A Robust Pu-pil Detection Algorithm Based on a New Adaptive Thresholding Procedure. // IEEE International Conference on e-Health and Bioengineering EHB. 2019.
  8. Матвеев И.А. Методы и алгоритмы автоматической обработки изображений радужной оболочки глаза. Диссертация на соискание ученой степени доктора технических наук. 2014.
  9. Bozomitu Radu, Pasarica Alexandru, Lupu Robert, Rotariu Cristi, Coca Eugen. Pupil detection algorithm based on RANSAC procedure. // International Symposium on Sig-nals, Circuits and Systems (ISSCS). 2017. pp. 1-4.
  10. Li Dongheng, Winfield D., Parkhurst D.J. Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches. // Paper Presented at the IEEE Computer Society Conference on Computer Vision and Pattern Recogni-tion. 2005. vol. 3. p. 79.
  11. Fuhl Wolfgang, Santini Thiago, Kübler Thomas, Kasneci Enkelejda. ElSe: ellipse se-lection for robust pupil detection in real-world environments. // The Ninth Biennial ACM Symposium. 2016. pp. 123-130.
  12. Mohammed Ghassan, Hong Bingrong, Alkazzaz Ann. Accurate Pupil Features Extrac-tion Based on New Projection Function. // Computing and Informatics. 2010. vol. 29. pp. 663-680.
  13. Лукошков И.А., Артемова А.А., Белов Ю.С. Адаптивный алгоритм нахождения границ зрачка на изображении. // Научное обозрение. Технические науки. 2020. № 3. C. 19-23.
  14. Матвеев И.А. Поиск центра радужки на изображении методом Хафа с двумерным пространством параметров. // Известия Российской академии наук. Теория и системы управления. 2012. № 6. С. 44-51.
  15. Alkuzaay Maryim, Alshemmary Ebtesam. Towards Accurate Pupil Detection Based on Morphology and Hough Transform. // Baghdad Science Journal. 2020. vol. 17(2). pp. 583-590.
  16. Ершов Е.И. Быстрое преобразование Хафа как инструмент анализа двумерных и трехмерных изображений в задачах поиска прямых и линейной кластеризации. Диссертация на соискание ученой степени кандидата физико-математических наук. 2018.
  17. Bresenham J. Algorithm for Computer Control of a Digital Plotter. // IBM Syst. J. 1965. vol. 4, pp. 25-30.
  18. Zongli Shi. Graphics Programming Principles and Algorithms. 2017.
  19. Rafael C. Gonzalez, Richard E. Woods. Digital image processing 4th. 2019. 1104 c.
  20. D. Marr, E. Hildreth. Theory of edge detection. // M.I.T. Psychology Department and artificial Intellegence Laboratory. 1980. pp. 187-217.
  21. Ansari Mohd, Kurchaniya Diksha, Dixit Manish. A Comprehensive Analysis of Image Edge Detection Techniques. // International Journal of Multimedia and Ubiquitous En-gineering. 2017. vol. 12. pp. 1-12.
  22. Robert Hooke, T.A. Jeeves. Direct Search Solution of Numerical and Statistical Prob-lems. // Westinghouse Research Laboratories, Pittsburgh, Pennsylvania. 1961.
  23. Медынский М.М., Дьячук А.К. Численные методы оптимизации с использованием MAPLE 11: Учебное пособие. – М.: Изд-во МАИ-ПРИНТ. 2009.
  24. Chinese Academy of Sciences Institute of Automation. Iris image database, version 4. URL: http://www.cbsr.ia.ac.cn/china/Iris20Databases20CH.asp. (accessed 2010).
  25. Mompeán J., Aragón J.L., Prieto P.M. et al. Design of an accurate and high-speed bin-ocular pupil tracking system based on GPGPUs. // J Supercomput. 2018. vol. 74. pp. 1836–1862.
  26. Ashraf Darwish. Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications. // Future Computing and Informatics Journal. 2018. vol. 3. pp. 231-246.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).