Vegetation Indices (NDVI and EVI) Time Series Approximation for Monitoring Crops of Khabarovsk Territory
- Authors: Stepanov A.S1, Fomina E.A2, Illarionova L.V2, Dubrovin K.N2, Fedoseev D.V2
-
Affiliations:
- Far Eastern Research Institute of Agriculture (FEARI)
- Computing Center of the Far Eastern Branch of the Russian Academy of Sciences (CC FEB RAS)
- Issue: Vol 22, No 6 (2023)
- Pages: 1473-1498
- Section: Mathematical modeling and applied mathematics
- URL: https://journals.rcsi.science/2713-3192/article/view/265842
- DOI: https://doi.org/10.15622/ia.22.6.8
- ID: 265842
Cite item
Full Text
Abstract
Keywords
About the authors
A. S Stepanov
Far Eastern Research Institute of Agriculture (FEARI)
Email: stepanfx@mail.ru
Clubnaya St. 13
E. A Fomina
Computing Center of the Far Eastern Branch of the Russian Academy of Sciences (CC FEB RAS)
Email: eliz37@mail.ru
Kim Yu Chen St. 65
L. V Illarionova
Computing Center of the Far Eastern Branch of the Russian Academy of Sciences (CC FEB RAS)
Email: illarionova_l@list.ru
Kim Yu Chen St. 65
K. N Dubrovin
Computing Center of the Far Eastern Branch of the Russian Academy of Sciences (CC FEB RAS)
Email: nobforward@gmail.com
Kim Yu Chen St. 65
D. V Fedoseev
Computing Center of the Far Eastern Branch of the Russian Academy of Sciences (CC FEB RAS)
Email: d.fedoseev@mail.ru
Kim Yu Chen St. 65
References
- Ferchichi A., Abbes A.B., Barra V., Farah I.R. Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: A systematic literature review // Ecological Informatics. 2022. vol. 68. no. 101552.
- Liu J., Song W. Mapping abandoned cropland using Within-Year Sentinel-2 time series // Catena. 2023. vol. 223. no. 106924.
- Терехин Э.А. Оценка сезонных значений вегетационного индекса (NDVI) для детектирования и анализа состояния посевов сельскохозяйственных культур // Исследование земли из космоса. 2015. № 1. doi: 10.7868/S0205961415010108.
- Савин И.Ю., Лупян Е.А., Барталев С.А. Оперативный спутниковый мониторинг состояния посевов сельскохозяйственных культур в России // Геоматика. 2011. № 2. С. 69–76.
- Черепанов А.С., Дружинин Е.Г. Спектральные свойства растительности и вегетационные индексы // Геоматика. 2009. № 3. C. 28–32.
- Воронина П.В., Мамаш Е.А. Классификация тематических задач мониторинга сельского хозяйства с использованием данных дистанционного зондирования MODIS // Вычислительные технологии. 2014. Т. 19. № 3. С. 76–102.
- Zhang C., Marzougui A., Sankaran S. High-resolution satellite imagery applications in crop phenotyping: An overview // Computers and Electronics in Agriculture. 2020. vol. 175. no. 105584.
- Kong D., Zhang Y., Gu X., Wang D. A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine // Journal of Photogrammetry and Remote Sensing. 2019. vol. 155. pp. 13–24.
- Chen Y., Hu J., Cai Z., Yang J., Zhou W., Hu Q., Wang C., You L., Xu B. A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data // Journal of Integrative Agriculture. 2023. 20 p. doi: 10.1016/j.jia.2023.05.035.
- Hao P., Tang H., Chen Z., Meng Q., Kang Y. Early-season crop type mapping using 30-m reference time series // Journal of Integrative Agriculture. 2020. vol. 19. no. 7. pp. 1897–1911.
- Singh R.K., Rizvi J., Behera M.D., Biradar C. Automated crop type mapping using time-weighted dynamic time warping-A basis to derive inputs for enhanced food and Nutritional Security // Current Research in Environmental Sustainability. 2021. vol. 3. no. 100032.
- Shammi S.A., Meng Q. Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling // Ecological Indicators. 2021. vol. 121. no. 107124.
- Bandaru V., Yaramasu R., Koutilya P.N.V.R., He J., Fernando S., Sahajpal R., Wardlow B.D., Suyker A., Justice C. PhenoCrop: An integrated satellite-based framework to estimate physiological growth stages of corn and soybeans // International Journal of Applied Earth Observation and Geoinformation. 2020. vol. 92. no. 102188.
- Tian F., Cai Z., Jin H., Hufkens K., Scheifinger H., Tagesson T., Smets B., Van Hoolst R., Bonte K., Ivits E., Tong X., Ardo J., Eklundh L. Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe // Remote Sensing of Environment. 2021. vol. 260. no. 112456.
- Катаев М.Ю., Бекеров А.А., Медвецкий Д.В. Методика сглаживания временного ряда вегетационного индекса NDVI // Доклады ТУСУРа. 2017. Т. 20. № 1. С. 85–88.
- Li S., Xu L., Jing Y., Yin H., Li X., Guan X. High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques // International Journal of Applied Earth Observation and Geoinformation. 2021. vol. 105. no. 102640.
- Миклашевич Т.С., Барталев С.А. Метод определения фенологических характеристик растительного покрова на основе временных рядов спутниковых данных // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13. № 1. С. 9–24.
- Shao Y., Lunetta R.S., Wheeler B., Iiame J.S., Campbella J.B. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data // Remote Sensing of Environment. 2016. vol. 174. pp. 258–265.
- Плотников Д.Е., Миклашевич Т.С., Барталев С.А. Восстановление временных рядов данных дистанционных измерений методом полиномиальной аппроксимации в скользящем окне переменного размера // Современные проблемы дистанционного зондирования Земли из космоса. 2014. Т. 11. № 2. С. 103–110.
- Atkinson P.M., Jeganathan C., Dash J., Atzberger C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology // Remote Sensing of Environment. 2012. vol. 123. pp. 400–417.
- Cao R., Chen J., Shen M., Tang Y. An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data // Agricultural and Forest Meteorology. 2015. vol. 200. pp. 9–20.
- Seo B., Lee J., Lee K., Hong S., Kang S. Improving remotely-sensed crop monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa and Illinois, USA // Field Crops Research. 2019. vol. 238. pp. 113–128.
- Воробьёва Н.С., Чернов А.В. Аппроксимация временных рядов NDVI в задаче раннего распознавания видов сельскохозяйственных культур по космическим снимкам // Сборник трудов III международной конференции и молодежной школы «Информационные технологии и нанотехнологии» (ИТНТ-2017). Самара: Новая техника, 2017. С. 390–399.
- Hird J.N., McDermid G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques // Remote Sensing of Environment. 2009. vol. 113. no. 1.pp. 248–258.
- Julien Y., Sobrino J.A. Optimizing and comparing gap-filling techniques using simulated NDVI time series from remotely sensed global data // International Journal of Applied Earth Observation and Geoinformation. 2019. vol. 76. pp. 93–111.
- Stepanov A., Dubrovin K., Sorokin A., Aseeva T. Predicting soybean yield at the regional scale using remote sensing and climatic data // Remote Sensing. 2020. vol. 12(12). no. 1936.
- Stepanov A., Dubrovin K., Sorokin A. Function fitting for modeling seasonal normalized difference vegetation index time series and early forecasting of soybean yield // The Crop Journal. 2022. vol. 10. no. 5. pp. 1452–1459.
- Lin S., Hao D, Zheng Y., Zhang H., Wang C., Yuan W. Multi-site assessment of the potential of fine resolution red-edge vegetation indices for estimating gross primary production // International Journal of Applied Earth Observation and Geoinformation. 2022. vol. 113. no. 102978.
- Gavin H.P. The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Department of civil and environmental engineering, Duke University, 2019. vol. 19.
- Zhao J., Zhang X. An Adaptive Noise Reduction Method for NDVI Time Series Data Based on S–G Filtering and Wavelet Analysis // Journal Indian Society Remote Sensing. 2018. vol. 46. no. 12. pp. 1975–1982.
- Han Y., Meng J., Xu J. Soybean growth assessment method based on NDVI and phenological calibration // Transactions of the Chinese Society of Agricultural Engineering. 2017. vol. 33. no. 2. pp. 177–182.
- Zhang H., Kang J., Xu X., Zhang L. Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi’an County, Heilongjiang province, China // Computers and Electronics in Agriculture. 2020. vol. 176. no. 105618.
Supplementary files
