Evaluation of Skeletonization Techniques for 2D Binary Images

Cover Page

Cite item

Full Text

Abstract

In the realm of modern image processing, the emphasis often lies on engineering-based approaches rather than scientific solutions to address diverse practical problems. One prevalent task within this domain involves the skeletonization of binary images. Skeletonization is a powerful process for extracting the skeleton of objects located in digital binary images. This process is widely employed for automating many tasks in numerous fields such as pattern recognition, robot vision, animation, and image analysis. The existing skeletonization techniques are mainly based on three approaches: boundary erosion, distance coding, and Voronoi diagram for identifying an approximate skeleton. In this work, we present an empirical evaluation of a set of well-known techniques and report our findings. We specifically deal with computing skeletons in 2d binary images by selecting different approaches and evaluating their effectiveness. Visual evaluation is the primary method used to showcase the performance of selected skeletonization algorithms. Due to the absence of a definitive definition for the "true" skeleton of a digital object, accurately assessing the effectiveness of skeletonization algorithms poses a significant research challenge. Although researchers have attempted quantitative assessments, these measures are typically customized for specific domains and may not be suitable for our current work. The experimental results shown in this work illustrate the performance of the three main approaches in applying skeletonization with respect to different perspectives.

About the authors

S. I Abudalfa

University College of Applied Sciences

Author for correspondence.
Email: sabudalfa@ucas.edu.ps
Aoun Al-Shawa Street, Tel Al-Hawa -

References

  1. Blum H. Biological Shape and Visual Science. J. Theor. Biol. 1973. vol. 38. pp. 205–287.
  2. Zhang Y, Sang L, Grzegorzek M, See J, Yang C. BlumNet: Graph component detection for object skeleton extraction. Proceedings of the 30th ACM International Conference on Multimedia. 2022. pp. 5527–5536.
  3. Sanchez-Salvador J.L., Campano C., Lopez-Exposito P., Tarrés Q., Mutjé P., Delgado-Aguilar M., Monte M.C. Blanco A. Enhanced morphological characterization of cellulose nano/microfibers through image skeleton analysis. Nanomaterials. 2021. vol. 11. no. 8. doi: 10.3390/nano11082077.
  4. Zhang F., Chen X., Zhang X. Parallel thinning and skeletonization algorithm based on cellular automaton. Multimedia Tools and Applications. 2020. vol. 79. pp. 33215– 33232.
  5. Kotsur D., Tereshchenko V. An optimized algorithm for computing the Voronoi skeleton. International Journal of Computing. 2020. vol. 19. no. 4. pp. 542–554.
  6. Wang Y., Xu Y., Tsogkas S., Bai X., Dickinson S, Siddiqi K. Deepflux for skeletons in the wild. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. pp. 5287–5296.
  7. Cha S.H. Comprehensive survey on distance/similarity measures be-tween probability density functions. International Journal of Mathe-matical Models and Methods in Applied Sciences. 2007. vol. 1(4). pp. 300–307.
  8. Yatziv L., Bartesaghi A., Sapiro G. O(N) implementation of the fast marching algorithm. Journal of computational physics. 2006. vol. 212. no. 2. pp. 393–399.
  9. Wang H., Yu Y., Yuan Q. Application of Dijkstra algorithm in robot path-planning. Second international conference on mechanic automation and control engineering. 2011. pp. 1067–1069.
  10. Gonzalez R.C., Woods R.E. Digital Image Processing, 3rd edition. Pearson Education, 2010. 185 p.
  11. Song C., Pang Z., Jing X., Xiao C. Distance field guided L1-median skeleton extraction. The Visual Computer. 2018. vol. 34. pp. 243–55.
  12. Langer M., Gabdulkhakova A., Kropatsch W.G. Non-centered Voronoi skeletons. Discrete Geometry for Computer Imagery: 21st IAPR International Conference. 2019. pp. 355–366.
  13. Boudaoud L.B., Solaiman B., Tari A. A modified ZS thinning algorithm by a hybrid approach. The Visual Computer. 2018. vol. 34. pp. 689–706.
  14. Morbiducci U., Mazzi V., Domanin M., De Nisco G., Vergara C., Steinman D.A., Gallo D. Wall shear stress topological skeleton independently predicts long-term restenosis after carotid bifurcation endarterectomy. Annals of biomedical engineering. 2020. vol. 48. pp. 2936–2949.
  15. Breuß M., Bruckstein A.M., Kiselman C.O., Maragos P. Shape Analysis: Euclidean, Discrete and Algebraic Geometric Methods. Dagstuhl Reports. 2018. vol. 8. no. 10. pp. 87–103.
  16. Zhang W., Wang X., Li X., Chen J. 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets. Computers in biology and medicine. 2018. vol. 92. pp. 64–72.
  17. Malik N.U., Sheikh U.U., Abu-Bakar S.A., Channa A. Multi-View Human Action Recognition Using Skeleton Based-FineKNN with Extraneous Frame Scrapping Technique. Sensors. 2023. vol. 23. no. 5. doi: 10.3390/s23052745.
  18. Ma J., Ren X., Li H., Li W., Tsviatkou V.Y., Boriskevich A.A. Noise-Against Skeleton Extraction Framework and Application on Hand Gesture Recognition. IEEE Access. 2023. vol. 11. pp. 9547–9559.
  19. Bataineh B., Alqudah M.K. Evaluation of Skeletonization Methods for Document Images with Rotation States. Amity International Conference on Artificial Intelligence. 2019. pp. 424–428. doi: 10.1109/AICAI.2019.8701352.
  20. Nazarkevych M., Dmytruk S., Hrytsyk V., Vozna O., Kuza A., Shevchuk O., Voznyi Y., Maslanych I., Sheketa V. Evaluation of the effectiveness of different image skeletonization methods in biometric security systems. International Journal of Sensors Wireless Communications and Control. 2021. vol. 11. no. 5. pp. 542–552.
  21. Perumalla S.R., Alekhya B., Raju M.C. Digital Skeletonization for Bio-Medical Images. Proceedings of Third International Conference on Sustainable Expert Systems. 2023. pp. 277–291.
  22. Ramakrishnan V., Schönmehl R., Artinger A., Winter L., Böck H., Schreml S., Gürtler F., Daza J., Schmitt V.H., Mamilos A., Arbelaez P. 3D Visualization, Skeletonization and Branching Analysis of Blood Vessels in Angiogenesis. International Journal of Molecular Sciences. 2023. vol. 24. no. 9. doi: 10.3390/ijms24097714.
  23. Zhu R., Oda M., Hayashi Y., Kitasaka T., Misawa K., Fujiwara M., Mori K. A skeleton context-aware 3D fully convolutional network for abdominal artery segmentation. International Journal of Computer Assisted Radiology and Surgery. 2023. vol. 18. no. 3. pp. 461–472.
  24. Feng Y., Chow L.S., Gowdh N.M., Ramli N., Tan L.K., Abdullah S., Tiang S.S. Gradient-based edge detection with skeletonization (GES) segmentation for magnetic resonance optic nerve images. Biomedical Signal Processing and Control. 2023. vol. 1. no. 80. doi: 10.3390/ijms24097714.
  25. Feng M., Meunier J. Skeleton Graph-Neural-Network-Based Human Action Recognition: A Survey. Sensors. 2022. vol. 22. no. 6. doi: 10.3390/s22062091.
  26. Chen D., Zhang T., Zhou P., Yan C., Li C. OFPI: Optical Flow Pose Image for Action Recognition. Mathematics. 2023. vol. 11. no. 6. doi: 10.3390/math11061451.
  27. Xing Y., Dai Y., Hirota K., Jia A. Skeleton-based method for recognizing the campus violence. Proceedings of the 9th International Symposium on Computational Intelligence and Industrial Applications. 2020. pp. 19–20.
  28. Cheriet M., Dentamaro V., Hamdan M., Impedovo D., Pirlo G. Multi-Speed Transformer Network for Neurodegenerative disease assessment and activity recognition. Computer Methods and Programs in Biomedicine. 2023. vol. 230(3). doi: 10.1016/j.cmpb.2023.107344.
  29. Alsaif O.I., Hasan S.Q., Maray A.H. Using skeleton model to recognize human gait gender. IAES International Journal of Artificial Intelligence. 2023. vol. 12. no. 2. pp. 974–983. doi: 10.11591/ijai.v12.i2.pp974-983.
  30. Yang W., Zhang J., Cai J., Xu Z. HybridNet: Integrating GCN and CNN for skeleton-based action recognition. Applied Intelligence. 2023. vol. 53. no. 1. pp. 574–585.
  31. Xu J., Zhang Y., Zeng Q., Ren X., Cai X., Sun X. A skeleton based model for promoting coherence among sentences in narrative story generation. arXiv preprint arXiv:1808.06945, 2018.
  32. Bai X., Ye L., Zhu J., Zhu L., Komura T. Skeleton filter: a self-symmetric filter for skeletonization in noisy text images. IEEE Transactions on Image Processing. 2019. vol. 29. pp. 1815–1826.
  33. Faizullah S., Ayub M.S., Hussain S., Khan M.A. A Survey of OCR in Arabic Language: Applications, Techniques, and Challenges. Applied Sciences. 2023. vol. 13. no. 7. doi: 10.3390/app13074584.
  34. Abdo H.A., Abdu A., Manza R.R., Bawiskar S. An approach to analysis of Arabic text documents into text lines, words, and characters. Indonesian Journal of Electrical Engineering and Computer Science. 2022. vol. 26. no. 2. pp. 754–763.
  35. Kiamouche O., Bennia A. Segmentation of Handwritten Arabic Words Using High Level Informative Scheme. 2nd International Conference on Advanced Electrical Engineering. 2022. 7 p. doi: 10.1109/ICAEE53772.2022.9962062.
  36. Arcelli C., Sanniti di Baja G., Serino L. Distance-driven skeletonization in voxel images. IEEE Trans. Pattern Anal. Mach. Intell. 2011. vol. 33. no. 4. pp. 709–720.
  37. Bitter I., Kaufman A.E., Sato M. Penalized-distance volumetric skeleton algorithm, IEEE Trans. Vis. Comput. Graph. 2001. vol. 7. no. 3. pp. 195–206.
  38. Lohou C., Bertrand G. A 3D 12-subiteration thinning algorithm based on P-simple points, Discrete Appl. Math. 2004. vol. 139. no. 1. pp. 171–195.
  39. Lohou C., Bertrand G. A 3D 6-subiteration curve thinning algorithm based on P-simple points, Discrete Appl. Math. 2005. vol. 151. no. 1. pp. 198–228.
  40. Németh G., Kardos P., Palágyi K., Thinning combined with iteration-by-iteration smoothing for 3D binary images, Graph. Models. 2011. vol. 73. pp. 335–345.
  41. Ma J., Ren X., Tsviatkou V.Y., Kanapelka V.K. A novel fully parallel skeletonization algorithm. Pattern Analysis and Applications. 2022. vol. 25. 169–188. doi: 10.1007/s10044-021-01039-y.
  42. Perumalla S.R., Alekhya B., Raju MC. Digital Skeletonization for Bio-Medical Images. Proceedings of Third International Conference on Sustainable Expert Systems: ICSES. 2023. pp. 277–291.
  43. Pinyoanuntapong E., Ali A., Wang P., Lee M., Chen C. GaitMixer: skeleton-based gait representation learning via wide-spectrum multi-axial mixer. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2023. doi: 10.48550/arXiv.2210.15491.
  44. Saha P.K., Borgefors G., di Baja G.S. A survey on skeletonization algorithms and their applications. Pattern recognition letters. 2016. vol. 76. pp. 3–12. doi: 10.1016/j.patrec.2015.04.006.
  45. Gittoes W., Botterill T., Green R. Quantitative analysis of skeletonisation algorithms for modelling of branches. Proceedings of Image and Vision Computing New Zealand. 2011. 6 p.
  46. Abudalfa S., Mikki M. K-means algorithm with a novel distance measure. Turkish Journal of Electrical Engineering and Computer Sciences. 2013. vol. 21. no. 6. pp. 1665–1684.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».