Hybrid Optimization Based on Spectrum Aware Opportunistic Routing for Cognitive Radio Ad Hoc Networks

Cover Page

Cite item

Full Text

Abstract

Opportunistic routing has increased the efficiency and reliability of Cognitive Radio Ad-Hoc Networks (CRAHN). Many researchers have developed opportunistic routing models, among them the Spectrum Map-empowered Opportunistic Routing (SMOR) model, which is considered a more efficient model in this field. However, there are certain limitations in SMOR, which require attention and resolution. The issue of delay and degradation of packet delivery ratio due to non-consideration of network bandwidth and throughput are addressed in this paper. In order to resolve these issues, a hybrid optimization algorithm comprising firefly optimization and grey wolf optimization algorithms are used in the basic SMOR routing model. Thus, developed Hybrid Firefly and Grey-Wolf Optimization-based SMOR (HFGWOSMOR) routing model improves the performance by high local as well as global search optimization. Initially, the relationship between the delay and throughput is analyzed and then the cooperative multipath communication is established. The proposed routing model also computes the energy values of the received signals within the bandwidth threshold and time; hence, the performance issues found in SMOR are resolved. To evaluate its efficiency, the proposed model is compared with SMOR and other existing opportunistic routing models, which show that the proposed HFGWOSMOR performs better than other models.

About the authors

H. M Abdullah

College of Computer Science - Jouf University, KSA

Author for correspondence.
Email: heshammohammedali@gmail.com
King Khalid Road -

A. Kumar

Hindustan College of Arts and science, Bharathiar University

Email: avsenthilkumar@yahoo.com
Avanashi Road, Peelamedu, Uppilipalayam 2/23

A. A Qasem Ahmed

College of Computer Science - Jouf University, KSA

Email: ammar.aqahmed@gmail.com
King Khalid Road -

M. A Saeed Mosleh

AL-Fayha College, Jubail industrial city

Email: ma.mosleh2010@gmail.com
Jubail St. -

References

  1. Akyildiz I.F., Lee W.Y., Chowdhury K.R. CRAHNs: Cognitive radio ad hoc networks. AD hoc networks. 2009. vol. 7(5). pp. 810–836.
  2. Peha J.M. Approaches to spectrum sharing. IEEE Communications magazine. 2005. vol. 43(2). pp. 10–12.
  3. Cesana M., Cuomo F., Ekici E. Routing in cognitive radio networks: Challenges and solutions. Ad Hoc Networks. 2011. vol. 9(3). pp. 228–248.
  4. Chowdhury K.R. Communication protocols for wireless cognitive radio ad-hoc networks. Georgia Institute of Technology, 2009. 153 p.
  5. Biswas S., Morris R. Opportunistic routing in multi-hop wireless networks. ACM SIGCOMM Computer Communication Review. 2004. vol. 34(1). pp. 69–74.
  6. Biswas S., Morris R. ExOR: opportunistic multi-hop routing for wireless networks. ACM SIGCOMM Computer Communication Review. 2005. vol. 35(4). pp. 133–144.
  7. Badarneh O.S., Salameh H.B. Opportunistic routing in cognitive radio networks: exploiting spectrum availability and rich channel diversity. IEEE Global Telecommunications Conference (GLOBECOM 2011). 2011. pp. 1–5. doi: 10.1109/GLOCOM.2011.6134241.
  8. Abdullah H.M.A., Kumar A.S. A Survey on Spectrum-Map Based on Normal Opportunistic Routing Methods for Cognitive Radio Ad Hoc Networks. International Journal of Advanced Networking and Applications. 2015. vol. 7(3), pp. 2761–2770.
  9. Lin S.C., Chen K.C. Spectrum-map-empowered opportunistic routing for cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology. 2014. vol. 63(6). pp. 2848–2861.
  10. Lin S.-C., Chen K.-C. Spectrum-Map-Empowered Opportunistic Routing for Cognitive Radio Ad Hoc Networks, IEEE Transactions on Vehicular Technology. 2014. vol. 63(6). pp. 2848–2861.
  11. Abdullah H.M.A., Kumar A.S. A Hybrid Artificial Bee Colony Based Spectrum Opportunistic Routing Algorithm for Cognitive Radio Ad Hoc Networks. International Journal of Scientific and Engineering Research. 2016. vol. 7(6). pp. 294–303.
  12. Abdullah H.M.A., Kumar A.S. HB-SOR: Hybrid Bat Spectrum Map Empowered Opportunistic Routing and Energy Reduction for Cognitive Radio Ad Hoc Networks (CRAHNs). International Journal of Scientific and Research Publications (IJSRP). 2017. vol. 7(5). pp. 284–297.
  13. Abdullah H.M.A., Kumar A.V.S. HFSA-SORA: Hybrid firefly simulated annealing based spectrum opportunistic routing algorithm for Cognitive Radio Ad hoc Networks (CRAHN). Conference on Intelligent Computing and Control (I2C2). 2017. doi: 10.1109/I2C2.2017.8321943.
  14. Abdullah H.M.A., Kumar A.V.S. Modified SMOR Using Sparsity Aware Distributed Spectrum Map for Enhanced Opportunistic Routing in Cognitive Radio Adhoc Networks. Journal of Advanced Research in Dynamical and Control Systems. 2017. vol. 9(6). pp. 184–196.
  15. Abdullah H.M.A., Kumar, A.V.S. Vertex Search based Energy-efficient Optimal Resource Allocation in Cognitive Radio ad hoc Networks. SPIIRAS Proceedings. 2018. vol. 2(57). pp. 5-25. doi: 10.15622/sp.57.1.
  16. Abdullah H.M.A., Kumar A.V.S. Proficient Opportunistic Routing by Queuing Based Optimal Channel Selection for the Primary Users in CRAHN. ARPN Journal of Engineering and Applied Sciences. 2018. vol. 13(5). pp. 1649–1657.
  17. He S.M., Zhang D.F., Xie K., Qiao H., Zhang J. Channel aware opportunistic routing in multi-radio multi-channel wireless mesh networks. Journal of Computer Science and Technology. 2014. vol. 29(3). pp. 487–501.
  18. Barve S.S., Kulkarni P. Multi-agent reinforcement learning based opportunistic routing and channel assignment for mobile cognitive radio ad hoc network. Mobile Networks and Applications. 2014. vol. 19(6). pp. 720–730.
  19. Lee H.W., Modiano E., Le L.B. Distributed throughput maximization in wireless networks via random power allocation. IEEE transactions on mobile computing. 2012. vol. 11(4). pp. 577–590.
  20. Li S., Zheng Z., Ekici E., Shroff N. Maximizing system throughput by cooperative sensing in cognitive radio networks. IEEE/ACM Transactions on Networking (TON). 2014. vol. 22(4). pp. 1245–1256.
  21. El-Sherif A.A., Mohamed A. Decentralized throughput maximization in cognitive radio wireless mesh networks. IEEE Transactions on Mobile Computing. 2014. vol. 13(9). pp. 1967–1980.
  22. Ju H., Zhang R. Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications. 2014. vol. 13(1). pp. 418–428.
  23. Ping S., Aijaz A., Holland O., Aghvami A.H. Energy and interference aware cooperative routing in cognitive radio ad-hoc networks. IEEE Wireless Communications and Networking Conference (WCNC). 2014. pp. 87–92. doi: 10.1109/WCNC.2014.6951927.
  24. Meghanathan N., Fanuel M. A minimum channel switch routing protocol for cognitive radio ad hoc networks. 12th International Conference on Information Technology-New Generations (ITNG). 2015. pp. 280–285.
  25. Mirjalili S., Saremi S., Mirjalili S.M., Coelho L.D.S. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with Applications. 2016. vol. 47. pp. 106–119.
  26. Poornimha J., Kumar A.V.S, Abdullah H.M.A. A New Approach to Improve Energy Consumption Time and Life Time using Energy Based Routing in WSN. Emerging Trends in Industry 4.0 (ETI 4.0). 2021. pp. 1–6, doi: 10.1109/ETI4.051663.2021.9619412.
  27. Yang Qin, Xiaoxiong Zhong, Yuanyuan Yang, Yanlin Li, Li Li. Joint channel assignment and opportunistic routing for maximizing throughput in cognitive radio networks. IEEE, 2014. doi: 10.1109/GLOCOM.2014.7037532.
  28. Dutta N., Sarma H.K.D., Polkowski Z. Cluster based routing in cognitive radio adhoc networks: Reconnoitering SINR and ETT impact on clustering. Computer Communications. 2018. vol. 115. pp. 10-20. doi: 10.1016/j.comcom.2017.09.002.
  29. Kumar A.V.S., Abdullah H.M.A., Hemashree P. An Efficient Geographical Opportunistic Routing Algorithm Using Diffusion and Sparse Approximation Models for Cognitive Radio Ad Hoc Networks. (Eds.: Smys S., Iliyasu A.M., Bestak R., Shi F.) New Trends in Computational Vision and Bio-inspired Computing: Selected works presented at the ICCVBIC 2018. 2020. pp. 323–333. doi: 10.1007/978-3-030-41862-5_30.
  30. Abdullah H.M.A., Kumar A.V.S. Selective Cooperative Jamming Based Relay Selection and Blowfish Encryption for Enhancing Channel and Data Security in CRAHN Routing (Ed.: Elkhodr M.). Enabling Technologies and Architectures for Next-Generation Networking Capabilities. 2019. pp. 105–124. doi: 10.4018/978-1-5225-6023-4.ch005.
  31. Mirjalili S., Mirjalili S.M., Lewis A. Grey Wolf Optimizer. Advances in Engineering Software. 2014. vol. 69. pp. 46–61. doi: 10.1016/j.advengsoft.2013.12.007.
  32. Li J., Zhang L. Analytical Model for Dynamic Spectrum Decision in Cognitive Radio Ad Hoc Networks: A Stochastic Framework. Future Intelligent Information Systems. 2011. pp. 325–332.
  33. Keskin R., Aliskan I. MultiObjective Optimisation-based Robust H∞ Controller Design Approach for a Multi-Level DC-DC Voltage Regulator. Elektronika ir Elektrotechnika. 2023. vol. 29(1). pp. 4–14.
  34. Yang X.-S. Cuckoo Search and Firefly Algorithm. Springer Science and Business Media LLC. 2014. vol. 516. 366 p. doi: 10.1007/978-3-319-02141-6.
  35. Emary E., Zawbaa H.M., Grosan C. Experienced Gray Wolf Optimization Through Reinforcement Learning and Neural Networks. IEEE Transactions on Neural Networks and Learning Systems. 2018. vol. 29(3). pp. 681–694. doi: 10.1109/TNNLS.2016.2634548.
  36. Zhang Q., Li H., Liu C., Hu W. A New Extreme Learning Machine Optimized by Firefly Algorithm. Sixth International Symposium on Computational Intelligence and Design. 2013. vol. 1. pp. 133–136. doi: 10.1109/ISCID.2013.147.
  37. Raj R.N., Nayak A., Kumar M.S. QoS-aware routing protocol for Cognitive Radio Ad Hoc Networks. Ad Hoc Networks. 2021. vol. 113. doi: 10.1016/j.adhoc.2020.102386.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».