Object Recognition by Components and Relations between Them
- Авторлар: Slivnitsin P.A1, Mylnikov L.A1
-
Мекемелер:
- Perm National Research Polytechnic University
- Шығарылым: Том 22, № 3 (2023)
- Беттер: 511-540
- Бөлім: Artificial intelligence, knowledge and data engineering
- URL: https://journals.rcsi.science/2713-3192/article/view/265811
- DOI: https://doi.org/10.15622/ia.22.3.2
- ID: 265811
Дәйексөз келтіру
Толық мәтін
Аннотация
Негізгі сөздер
Авторлар туралы
P. Slivnitsin
Perm National Research Polytechnic University
Email: slivnitsin.pavel@gmail.com
Professora Pozdeyeva St. 7
L. Mylnikov
Perm National Research Polytechnic University
Email: lamylnikov@hse.ru
Student St. 38
Әдебиет тізімі
- Meel V. The 87 Most Popular Computer Vision Applications for 2023. 2022. Available at: https://viso.ai/applications/computer-vision-applications/ (accessed: 23.11.2022).
- Urbonas A., Raudonis V., Maskeliūnas R., Damaševičius R. Automated identification of wood veneer surface defects using faster region-based convolutional neural network with data augmentation and transfer learning // Appl. Sci. 2019. vol. 9(22). pp. 4898.
- Орешин А.Н., Лысанов И.Ю. Новый метод автоматизации процессов аутентификации персонала с использованием видеопотока // Труды СПИИРАН. 2017. Т. 5. № 54. С. 35–56.
- Bureš L., Gruber I, Neduchal P., Hlaváč M., Hruz M. Semantic text segmentation from synthetic images of full-text documents // SPIIRAS Proc. 2019. vol. 18(6). pp. 1380–1405.
- Yu F., Chen H, Wang X., Xian W., Chen Y., Liu F., Madhavan V., Darrell T. BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2020. pp. 2633–2642.
- Slivnitsin P., Bachurin A., Mylnikov L. Robotic system position control algorithm based on target object recognition // Proceedings of International Conference on Applied Innovation in IT. Anhalt University of Applied Sciences. 2020. vol. 8(1). pp. 87–94.
- Чиров Д.С., Чертова О.Г., Потапчук Т.Н. Методика обоснования требований к системе технического зрения робототехнического комплекса // Труды СПИИРАН. 2017. Т. 2. № 51. С. 152–176.
- Delfanti A., Frey B. Humanly Extended Automation or the Future of Work Seen through Amazon Patents // Sci. Technol. Hum. Values. 2021. vol. 46. no. 3. pp. 655–682.
- Al-Azzo F., Taqi A.M., Milanova M. Human related-health actions detection using Android Camera based on TensorFlow Object Detection API // Int. J. Adv. Comput. Sci. Appl. 2018. vol. 9. no. 10. pp. 9–23.
- Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Zh., Karpathy A., Khosla A., Bernstein M., Berg A.C., Fei-Fei L. ImageNet Large Scale Visual Recognition Challenge // Int. J. Comput. Vis. 2015. vol. 115. no. 3. pp. 211–252.
- Zou Z., Chen K., Shi Zh., Guo Yu., Ye J. Object Detection in 20 Years: A Survey // arXiv. 2019. pp. 1–39.
- He K., Gkioxari G., Dollár P., Girshick R.. Mask R-CNN // IEEE Trans. Pattern Anal. Mach. Intell. 2020. vol. 42. no. 2. pp. 386–397.
- Kirillov A., He K., Girshick R., Rother C., Dollar P. Panoptic segmentation // Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2019. vol. 2019-June. pp. 9396–9405.
- Bazarevsky V, Grishchenko I, Raveendran K., Zhu T., Zhang F., Grundmann M. BlazePose: On-device real-time body pose tracking // arXiv. 2020.
- Khan K., Ahmad N., Ullah K., Din I. Multiclass semantic segmentation of faces using CRFs // Turkish J. Electr. Eng. Comput. Sci. 2017. vol. 25. no. 4. pp. 3164–3174.
- Zeng A, Yu K.-T., Song S., Suo D., Walker Jr.E., Rodriguez A., Xiao J. Multi-view self-supervised deep learning for 6D pose estimation in the Amazon Picking Challenge // 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017. pp. 1386–1383.
- Yaguchi H., Nagahama K., Hasegawa T., Inaba M. Development of an autonomous tomato harvesting robot with rotational plucking gripper // IEEE Int. Conf. Intell. Robot. Syst. 2016. vol. 2016-Novem. pp. 652–657.
- Mylnikov L., Slivnitsin P., Mylnikova A. Robotic System Operation Specification on the Example of Object Manipulation // Proc. Int. Conf. Appl. Innov. IT. 2022. vol. 10. no. 1. pp. 51–59.
- Sermanet P., Eigen D., Zhang X., Mathieu M., Fergus R., LeCun Y. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks // 2nd Int. Conf. Learn. Represent. ICLR 2014 - Conf. Track Proc. 2013. 16 p.
- Viola P., Jones M. Rapid Object Detection using a Boosted Cascade of Simple Features // Proceedings IEEE Conf. on Computer Vision and Pattern Recognition. 2001. pp. 511–518.
- Dalal N., Triggs B. Histograms of oriented gradients for human detection // Proc. - 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognition, CVPR 2005. 2005. vol. 1(16). pp. 886–893.
- Felzenszwalb P., McAllester D., Ramanan D. A discriminatively trained, multiscale, deformable part model // 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008. vol. 330. no. 6. pp. 1–8.
- Wolpert D.H., Macready W.G. No free lunch theorems for optimization // IEEE Trans. Evol. Comput. 1997. vol. 1(1). pp. 67–82.
- Slivnitsin P., Kniazev A., Mylnikov L., Schlechtweg S., Kokoulin A. Influence of Synthetic Image Datasets on the Result of Neural Networks for Object Detection // Proc. Int. Conf. Appl. Innov. IT. 2021. vol. 9(1). pp. 55–60.
- Abramovich F., Pensky M. Classification with many classes: Challenges and pluses // J. Multivar. Anal. 2019. vol. 174. pp. 1–25.
- Redmon J., Divvala S., Girshick R., Farhadi A. You Only Look Once: Unified, Real-Time Object Detection // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. vol. 2016-Decem. pp. 779–788.
- Liu W., Anguelov D., Erhan D. Szegedy C., Reed S., Fu C.-Y., Berg A.C SSD: Single Shot MultiBox Detector // Eccv / (Eds.: Leibe B.). Cham: Springer International Publishing, 2016. vol. 9905. pp. 398–413.
- Rezatofighi H., Tsoi N., Gwak J., Sadeghian A., Reid I., Savarese S. Generalized intersection over union: A metric and a loss for bounding box regression // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2019. vol. 2019-June. pp. 658–666.
- Ren S., He K., Girshick R., Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks // IEEE Trans. Pattern Anal. Mach. Intell. 2017. vol. 39(6). pp. 1137–1149.
- Gomes H.M. Model learning in iconic vision // PQDT – UK & Ireland. 2002. 212 p.
- Salas-Moreno R.F., Newcombe R.A., Strasdat H., Kelly P.H.J., Davison A.J. SLAM++: Simultaneous localisation and mapping at the level of objects // Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2013. pp. 1352–1359.
- Dai A., Nießner M. 3DMV: Joint 3D-multi-view prediction for 3D semantic scene segmentation // Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 2018. vol. 11214 LNCS. pp. 458–474.
- Dai A., Chang A.X., Savva M., Halber M., Funkhouser T., Nießner M. ScanNet: Richly-annotated 3D reconstructions of indoor scenes // Proc. – 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017. 2017. vol. 2017-Janua. pp. 2432–2443.
- Le T., Duan Y. PointGrid: A Deep Network for 3D Shape Understanding // Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2018. pp. 9204–9214.
- Su H., Maji S., Kalogerakis E., Learned-Miller E. Multi-view Convolutional Neural Networks for 3D Shape Recognition // 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2015. vol. 32(1). pp. 945–953.
- Choy C., Park J., Koltun V. Fully convolutional geometric features // Proc. IEEE Int. Conf. Comput. Vis. 2019. vol. 2019-Octob. pp. 8957–8965.
- Biederman I. Recognition-by-Components: A Theory of Human Image Understanding // Psychol. Rev. 1987. vol. 94(2). pp. 115–147.
- Thompson P. Margaret Thatcher: A New Illusion // Perception. 1980. vol. 9(4). pp. 483–484.
- Biederman I. Visual object rocognition // An Invitation to Cognitive Science. (Eds.: Kosslyn S.M., Osherson D.N.) Cambridge: MIT Press, 1995. pp. 121–165.
- Winston P.H. Artificial intelligence. Addison-Wesley Longman Publishing Co., Inc. Boston, MA: Addison-Wesley Publishing Company, 1992. 737 p.
- Marr D., Poggio T. A computational theory of human stereo vision // Proc. R. Soc. London - Biol. Sci. 1979. vol. 204. no. 1156. pp. 301–328.
- Marr D., Nishihara H.K. Representation and recognition of the spatial organization of three-dimensional shapes // Proc. R. Soc. London. Ser. B. Biol. Sci. 1978. vol. 200. no. 1140. pp. 269–294.
- Abdel-Aziz Y.I., Karara H.M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry // Photogramm. Eng. Remote Sensing. 2015. vol. 81(2). pp. 103–107.
- Bolya D, Zhou C., Xiao F., Lee Y.J. YOLACT++ Better Real-Time Instance Segmentation // IEEE Trans. Pattern Anal. Mach. Intell. 2022. vol. 44. no. 2. pp. 1108–1121.
- Bolya D, et al. You Only Look At CoefficienTs. 2020. Available at: https://github.com/dbolya/yolact (accessed: 11.11.2022).
- Kazemi V., Sullivan J. One Millisecond Face Alignment with an Ensemble of Regression Trees // Rev. Anthropol. 1992. vol. 21(2). pp. 147–157.
- Lin T.Y., Maire M., Belongie S., Bourdev L., Girshick R., Hays J., Perona P., Ramanan D., Zitnick C.L., Dollar P. Microsoft COCO: Common objects in context // Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 2014. vol. 8693 LNCS(5). pp. 740–755.
- Denninger M., Sundermeyer M., Winkelbauer D., Zidan Y., Olefir D., Elbadrawy M., Lodhi A., Katam H.T. BlenderProc. 2019. 7 p. doi: 10.48550/arXiv.1911.01911.
- Blender 3D. Available at: https://www.blender.org/ (accessed: 22.11.2022).
- Slivnitsin P. Position estimation for robotic system positioning using the example of outdoor luminaire replacement: master thesis. Koethen: HS Anhalt, 2021. 54 p.
- Vershinin D., Mylnikov L. A review and comparison of mapping and trajectory selection algorithms // Proc. Int. Conf. Appl. Innov. IT. 2021. vol. 9(1). pp. 85–92.
- Zeng A. и др. TossingBot: Learning to Throw Arbitrary Objects With Residual Physics // IEEE Trans. Robot. 2020. vol. 36(4). pp. 1307–1319.
- Chen D. и др. Learning Canonical Shape Space for Category-Level 6D Object Pose and Size Estimation // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. pp. 11970–11979.
- Koch S. и др. ABC: A big cad model dataset for geometric deep learning // Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2019. vol. 2019-June. pp. 9593–9603.
Қосымша файлдар
