Machine Learning Model for Determination of the Optimal Strategy in an Online Auction

Capa

Citar

Texto integral

Resumo

We apply a machine learning model to determine the optimal strategy in an online auction for the rent of computing resources using the best-choice model. The best-choice model allows clients to minimize the expected cost of renting a computing resource based on the spot price distribution function. The spot price dynamics platform is investigated. The most suitable price distributions in an auction are the normal distribution and its mixtures. In this case, the problems of determining the number of components in the mixture and estimating its parameters arise. One of the well-known methods for determining the number of components in a mixture of normal distributions is the BIC criterion. The EM algorithm is a basic tool for estimating the parameters of a mixture of distributions if we know the number of components. However, parameter estimation by this method takes more time when both the sample size and the number of components of the mixture increase. To automate and expedite the process of determining the number of components for a mixture of normal distributions and estimating its parameters, a classification machine learning model based on a convolutional neural network is developed. The results of the model training and validation are presented. The suggested model is compared with other algorithms which do not use neural networks. The results show that the suggested model performs well in determining the most appropriate number of components for a mixture of normal distributions and in reducing the time spent on applying the EM algorithm to estimate its parameters. This model can be used in different arias, for example, in finance or for determination of the optimal strategy in an online auction for the rent of computing resources.

Sobre autores

A. Ivashko

Karelian Research Centre of the Russian Academy of Sciences

Email: aivashko@krc.karelia.ru
Pushkinskaya St. 11

G. Safonov

Petrozavodsk State University

Email: jiri.safonov@gmail.com
Lenin Ave. 33

Bibliografia

  1. Myerson R.B. Optimal Auction Design // Mathematics of Operations Research. 1981. vol. 6. no. 1. pp. 58–73.
  2. Сонин К.И. Основы теории аукционов (Нобелевская премия по экономике 2020 года) // Вопросы экономики. 2021. No 1, C. 5–32.
  3. Савватеев А.В., Филатов А.Ю. Теория и практика аукционов // Вестник ВГУ. Серия: Экономика и управление. 2018. No 3. C. 119–131.
  4. Wang Y., Liu X., Zheng Z., Zhang Z., Xu M., Yu C., Wu F. On Designing a Two-stage Auction for Online Advertising // WWW ’22: Proceedings of the ACM Web Conference. 2022. pp. 90–99.
  5. Shmueli G., Russo R.P., Jank W. Modeling Bid Arrivals in Online Auctions. Robert H. Smith School Research Paper No. RHS-06-001, 2004. Available at SSRN: https://ssrn.com/abstract=902868 (accessed 26.07.2022).
  6. Maslov A., Schwartz J. Imperfect Competition in Online Auctions // Journal of Mathematical Economics. 2022 Advance Access, Available at SSRN: https://ssrn.com/abstract=4025920 (accessed 26.07.2022).
  7. Harrell G., Harrison J., Mao G., Wang J. Online Auction and Secretary Problem // Int’l Conf. Scientific Computing. 2015. pp. 241–244.
  8. Babaioff M., Immorlica N., Kempe D., Kleinberg R. Online auctions and generalized secretary problems // SIGecom Exch. 2008. vol. 7. no. 2. pp. 1–11.
  9. Guo X. An optimal strategy for sellers in an online auction //Authors Info & Claims ACM Transactions on Internet Technology. 2002. Vol. 2, Issue 1. pp. 1–13.
  10. Mazalov V.V., Ivashko A.A. Online Auction and Optimal Stopping Game with Imperfect Observation // Intelligent Information and Database Systems. ACIIDS 2020, LNCS. 2020. vol. 12033. Springer. pp. 145–156.
  11. Мазалов В.В., Фалько (Ивашко) А.А. Задача наилучшего выбора и ее применение в рекламных кампаниях поисковой системы Яндекс // Интернет-Математика 2007. Яндекс. 2007. C. 126–134.
  12. Ивашко Е.Е., Черных А., Ивашко А.А., Сафонов Г.Р. Эффективная по цене стратегия аренды облачных ресурсов при неопределенности цены // Математическая Теория Игр и ее Приложения. 2019. Т. 11. Вып. 3. C. 5–30.
  13. McLachlan G.J., Lee S.X., Rathnayake S.I. Finite Mixture Models // Annual Review of Statistics and Its Application. 2019. vol. 6, no. 1. pp. 355–378.
  14. Jank W., Shmueli G. Modeling Online Auctions. 2010. Wiley. 336 p.
  15. Гойхман В., Лапий А. Построение архитектуры нейронной сети для выявления вида распределения случайных величин // Технологии и средства связи. 2016. Вып. 3, C. 36–40.
  16. Khoussi S., Heckert N., Battou A., Bensalem S. Neural Networks for Classifying Probability Distributions, Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD. Available at:
  17. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931221 (accessed 12.10.2022).
  18. Королев В.Ю., Ломской В.А., Пресняков Р.Р., Рэй М. Анализ компонент волатильности с помощью метода скользящего разделения смесей // Системы и средства информатики. Специальный выпуск. 2005. М: ИПИРАН. С. 180–206.
  19. Волков Н.А., Буденный С.А., Андрианова А.М. Смеси вероятностных распределений в задачах регрессии и проверки на аномальность и их применение для PVT-свойств // ТРУДЫ МФТИ. 2020. Т. 12, No 3, C. 17–43.
  20. Abba Mallam Hassane, Barro Diakarya, Yam ́eogo WendKouni, Saley Bisso Pricing Multivariate European Equity Option Using Gaussians Mixture Distributions and EVT-Based Copulas // International Journal of Mathematics and Mathematical Sciences. 2021. vol. 2021. Article ID 7648093, 9 pages.
  21. Javadi B., Thulasiram K.R., Rajkumar B. Characterizing spot price dynamics in public cloud environments // Future Generation Computer Systems. 2013. vol. 29. Issue 4, June 2013. pp. 988–999.
  22. Ivashko A., Safonov G. Optimal strategy modelling in an online auction for the rent of computing resources // CEUR Workshop Proceedings, Volume 2792, 2020, 2nd International Workshop on Stochastic Modeling and Applied Research of Technology, SMARTY 2020; Petrozavodsk; Russian Federation; 16 August 2020. 2020. pp. 66–75.
  23. Buduma N., Buduma N., Papa J. Fundamentals of Deep Learning, 2nd Edition O’Reilly Media, Inc., 2022. 296 p.
  24. Голубинский А.Н., Толстых А.А. Гибридный метод обучения сверточных нейронных сетей // Информатика и автоматизация. 2021. Т. 20, Вып. 2. C. 463–490.
  25. Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2). Available at: http://aws.amazon.com/ec2 (accessed 8.06.2022).
  26. Kumar D., Baranwal G., Raza Z., Vidyarthi D.P. A Survey on Spot Pricing in Cloud Computing // Journal of Network and Systems Management. 2018. pp. 809–856.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».