Machine-Synthesized Control of Nonlinear Dynamic Object Based on Optimal Positioning of Equilibrium Points
- Авторлар: Shmalko E.Y.1
-
Мекемелер:
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences (FRC CSC RAS)
- Шығарылым: Том 22, № 1 (2023)
- Беттер: 87-109
- Бөлім: Robotics, automation and control systems
- URL: https://journals.rcsi.science/2713-3192/article/view/265797
- DOI: https://doi.org/10.15622/ia.22.1.4
- ID: 265797
Дәйексөз келтіру
Толық мәтін
Аннотация
Негізгі сөздер
Авторлар туралы
E. Shmalko
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences (FRC CSC RAS)
Email: e.shmalko@gmail.com
Vavilova St. 44/2
Әдебиет тізімі
- Pontryagin L.S., Boltyanskii V.G., Gamkreidze R.V., Mishchenko E.F. The Mathematical Theory of Optimal Processes. New York: Division of John Wiley and Sons Inc. 1962. 360 p.
- Hartl R.F., Sethi S.P., Vickson R.G. A survey of the maximum principles for optimal control problems with state constraints // SIAM Review. 1995. vol. 37. no. 2. pp. 181–218.
- Dmitruk A.V. Maximum principle for the general optimal control problem with phase and regular mixed constraints // Computational Mathematics and Modeling. 1993. vol. 4. no. 4. pp. 364–377.
- Karamzin D., Antunes de Oliveira V., Lobo Pereira F.M., Nunes Silva G. Minimax optimal control problem with state constraints // Eur. J. Control. 2016. vol. 32. pp. 24–31.
- Schwarzkopf A.B. Optimal controls with equality state constraints // J. Optim. Theory Appl. 1976. vol. 19. pp. 455–468.
- Gao X., Zhang X., Wang Ya. A Simple Exact Penalty Function Method for Optimal Control Problem with Continuous Inequality Constraints // Abstract and Applied Analysis. 2014. vol. 2014. p. 12.
- Diveev A., Shmalko E. Optimal control design for a group of mobile robots with uncertainties // Proceedings of the 15th IEEE Conference on Industrial Electronics and Applications. 2020. vol. 15. pp. 308-313.
- Sullivan T.J. Introduction to Uncertainty Quantification. Texts in Applied Mathematics. Springer, Cham. 2015. vol. 63. 356 p.
- Moe S., Rustad A.M., Hanssen K.G. Machine Learning in Control Systems: An Overview of the State of the Art // 38th SGAI International Conference on Artificial Intelligence (Eds.: Bramer M., Petridis M.). Springer, Cham. 2018.
- Chertovskih R., Karamzin D., Khalil N.T., Lobo Pereira F. Regular path-constrained time-optimal control problems in three-dimensional flow fields // Eur. J. Control. 2020. vol. 56. pp. 98–106.
- Arutyunov A., Karamzin D.A. Survey on Regularity Conditions for State-Constrained Optimal Control Problems and the Non-degenerate Maximum Principle // J. Optim. Theory Appl. 2020. vol. 184. 697–723.
- Gill P.E., Murray W., Wright M.H. Practical Optimization. Academic Press: Cambridge. 1981. 402 p.
- Евтушенко Ю.Г. Оптимизация и быстрое автоматическое дифференцирование. М.: Научное издание ВЦ РАН. 2013.
- Betts J.T. Survey of Numerical Methods for Trajectory Optimization // J. Guid. Control. Dyn. 1998. vol. 21. pp. 193–207.
- Газизов Т.Т. Методы глобальной оптимизации: учебное пособие. Томск: В-Спектр. 2017.
- Amirkhanova G., Gorchakov A., Duysenbaeva A., Posypkin M. Multistart method with deterministic restart mechanism // Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes. 2020. vol. 16 (2). pp. 100-111.
- Евтушенко Ю.Г., Посыпкин М.А. Варианты метода неравномерных покрытий для глобальной оптимизации частично-целочисленных нелинейных задач // Докл. Академии наук. 2011. Т. 437(2). С. 168–172.
- Карпенко А.П. Современные алгоритмы поисковой оптимизации. Алгоритмы, вдохновленные природой: учебное пособие. М.: Издательство МГТУ им. Н.Э. Баумана. 2014.
- Saunders B.R. Optimal Trajectory Optimization under Uncertainty. Massachusetts Institute of Technology. 2012.
- Seywald H., Kumar R. Desensitized Optimal Trajectories // AIAA/AAS Spaceflight Mechanics Meeting. 1996. vol. 96 (107). pp. 103-115. doi: 10.2514/6.2019-0651.
- Makkapati V.R., Dor M., Tsiotras P. Trajectory desensitization in optimal control problems // Proceedings of the IEEE Conference on Decision and Control. 2018. pp. 2478–2483.
- Zhou B., Shi Y. Prescribed-Time Stabilization of a Class of Nonlinear Systems by Linear Time-Varying Feedback // IEEE Transactions on Automatic Control. 2021. vol. 66. no. 12. pp. 6123-6130.
- Chen C.C., Qian C., Sun Z.Y., Liang Y.W. Global output feedback stabilization of a class of nonlinear systems with unknown measurement sensitivity // IEEE Trans. Autom. Control. 2018. vol. 63. no. 7. pp. 2212-2217.
- Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. M.: Наука.1976.
- Walsh G., Tilbury D., Sastry S., Murray R., Laumond J.P. Stabilization of trajectories for systems with nonholonomic constraints // IEEE Transactions on Automatic Control. 1994. vol. 39. no. 1. pp. 216-222. doi: 10.1109/9.273373.
- Diveev A.I., Shmalko E.Yu., Serebrenny V.V., Zentay P. Fundamentals of Synthesized Optimal Control // Mathematics. 2021. vol. 9(21). pp. 1-18.
- Малкин И.Г. Теория устойчивости движения. Изд. 4. URSS. 2017.
- Diveev A., Shmalko E. Machine Learning Control by Symbolic Regression. Springer, Cham. 2021.
- Duriez T., Brunton S.L., Noack B.R. Machine Learning Control–Taming Nonlinear Dynamics and Turbulence. Springer: Switzerland. 2017.
- Deisenroth M.P., Faisal A.A., Ong C.S. Mathematics for Machine Learning. Cambridge: Cambridge University Press. 2020.
- Burkov A. The Hundred-Page Machine Learning Book. 2019. 160 p.
- Geron A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol: O’Reilly Media Inc. 2019. 856 p.
- Diveev A.I., Shmalko E.Y. Machine-Made Synthesis of Stabilization System by Modified Cartesian Genetic Programming // IEEE Transactions on Cybernetics. 2022. vol. 52. no. 7. pp. 6627-6637.
- Savchenko A.V. Probabilistic Neural Network With Complex Exponential Activation Functions in Image Recognition // IEEE Transactions on Neural Networks and Learning Systems. 2020. vol. 31. no. 2. pp. 651-660.
- Zhang W., Wang J., Lan F. Dynamic hand gesture recognition based on short-term sampling neural networks // IEEE/CAA Journal of Automatica Sinica. 2021. vol. 8. no. 1. pp. 110-120.
- Xiao J., Jia Y., Jiang X., Wang S. Circular Complex-Valued GMDH-Type Neural Network for Real-Valued Classification Problems // IEEE Transactions on Neural Networks and Learning Systems. 2020. vol. 31. no. 12. pp. 5285-5299.
- Pelchat N., Gelowitz C.M. Neural Network Music Genre Classification // Canadian Journal of Electrical and Computer Engineering. 2020. vol. 43. no. 3. pp. 170-173.
- Shmalko E., Diveev A. Control Synthesis as Machine Learning Control by Symbolic Regression Methods // Applied Sciences. 2021. vol. 11. p. 5468. doi: 10.3390/app11125468.
- Дивеев А.И. Гибридный эволюционный алгоритм для решения задачи оптимального управления // Вопросы теории безопасности и устойчивости систем. 2021. T. 23. С. 3-12.
- Дивеев А.И., Константинов С.В. Исследование практической сходимости эволюционных алгоритмов оптимального программного управления колесным роботом // Известия РАН. Теория и системы управления. 2018. Т. 57(4). С. 80-106.
- Дивеев А.И. Метод сетевого оператора. М.: Изд-во ВЦ РАН. 2010.
- Программный пакет расчета значений управляющих сигналов по матрице сетевого оператора https://github.com/urock/network_operator
Қосымша файлдар
