Cooperative Control of Traffic Signals and Vehicle Trajectories
- Authors: Agafonov A.A1, Yumaganov A.S1
-
Affiliations:
- Samara National Research University
- Issue: Vol 22, No 1 (2023)
- Pages: 5-32
- Section: Robotics, automation and control systems
- URL: https://journals.rcsi.science/2713-3192/article/view/265794
- DOI: https://doi.org/10.15622/ia.22.1.1
- ID: 265794
Cite item
Full Text
Abstract
About the authors
A. A Agafonov
Samara National Research University
Email: ant.agafonov@gmail.com
Lukachev St. 39Б
A. S Yumaganov
Samara National Research University
Email: yumagan@gmail.com
Lukachev St. 39Б
References
- Transport sector economic analysis // EU Science Hub. URL: https://joint-research-centre.ec.europa.eu/scientific-activities-z/transport-sector-economic-analysis_en. (дата обращения: 30.05.2022).
- О производстве и использовании валового внутреннего продукта (ВВП) в 2021 году // Официальный сайт федеральной службы государственной статистики. URL: https://rosstat.gov.ru/storage/mediabank/59_08-04-2022.htm. (дата обращения: 30.05.2022).
- Traffic congestion to cost the UK economy more than £300 billion over the next 16 years // Inrix. 2014. URL: https://inrix.com/press-releases/traffic-congestion-to-cost-the-uk-economy-more-than-300-billion-over-the-next-16-years/. (дата обращения: 30.05.2022).
- Requia W.J. et al. The health impacts of weekday traffic: A health risk assessment of PM 2.5 emissions during congested periods // Environment international. 2018. vol. 111. pp. 164–176.
- Zhang K., Batterman S. Air pollution and health risks due to vehicle traffic // The Science of the total environment. 2013. vol. 450–451. pp. 307–316.
- Li X. et al. Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation // Transportation Research Part B: Methodological. 2014. vol. 70. pp. 319–339.
- Наличие автомобильного транспорта // Единая межведомственная информационно-статистическая система (ЕМИСС). URL: https://fedstat.ru/indicator/36228. (дата обращения: 30.05.2022).
- ГОСТ Р 56829-2015 Интеллектуальные транспортные системы. Термины и определения // Электронный фонд правовых и нормативно-технических документов. URL: https://docs.cntd.ru/document/1200128315. (дата обращения: 20.07.2022).
- Как работают Яндекс.Пробки // Яндекс. URL: https://yandex.ru/company/technologies/yaprobki/. (дата обращения: 30.05.2022).
- Агафонов А.А., Мясников В.В. Метод определения надежного кратчайшего пути в стохастической сети с использованием параметрически заданных устойчивых распределений вероятностей // SPIIRAS Proc. 2019. Т. 18. № 3. С. 558–582.
- Lopez P.A. et al. Microscopic Traffic Simulation using SUMO Maui, HI: IEEE, 2018. pp. 2575–2582.
- Ma J. et al. Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: Computational issues and optimization // Transportation Research Part B: Methodological. 2017. vol. 95. pp. 421–441.
- Hu J. et al. Integrated optimal eco-driving on rolling terrain for hybrid electric vehicle with vehicle-infrastructure communication // Transportation research. Part C: Emerging technologies. 2016. vol. 68. pp. 228–244.
- Asadi B., Vahidi A. Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time // IEEE transactions on control systems technology: a publication of the IEEE Control Systems Society. 2011. vol. 19. no. 3. pp. 707–714.
- Zhang H. et al. A priority-based autonomous intersection management (AIM) scheme for connected automated vehicles (CAVs) // Vehicles. 2021. vol. 3. no. 3. pp. 533–544.
- Jiang H et al. Eco approaching at an isolated signalized intersection under partially connected and automated vehicles environment // Transportation research. Part C: Emerging technologies. 2017. vol. 79. pp. 290–307.
- Lee J., Park B. Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment // IEEE transactions on intelligent transportation systems: a publication of the IEEE Intelligent Transportation Systems Council. 2012. vol. 13. no. 1. pp. 81–90.
- Yu C. et al. Managing connected and automated vehicles at isolated intersections: From reservation- to optimization-based methods // Transportation Research Part B: Methodological. 2019. vol. 122. pp. 416–435.
- Zhou F., Li X., Ma J. Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography // Transportation Research Part B: Methodological. 2017. vol. 95. pp. 394–420.
- Yang Z. et al. Eco-trajectory planning with consideration of queue along congested corridor for hybrid electric vehicles // Transportation research record. 2019. vol. 2673. no. 9. pp. 277–286.
- Barth M. et al. Dynamic ECO-driving for arterial corridors // IEEE Forum on Integrated and Sustainable Transportation Systems. 2011. pp. 182-188.
- Webster F.V. Traffic Signal Settings. Road Research Technical Paper / Stationery Office, 1958. no 39.
- Little J., Kelson M., Gartner N. MAXBAND: A Program for Setting Signals on Arteries and Triangular Networks // Transportation Research Record Journal of the Transportation Research Board. 1981. vol. 795. pp. 40–46.
- Li M.-T., Gan A.C. Signal timing optimization for oversaturated networks using TRANSYT-7F // Transportation Research Record. 1999. № 1683. pp. 118–126.
- Papageorgiou M. et al. Review of road traffic control strategies // Proceedings of the IEEE. 2003. vol 12. no. 91. pp. 2043–2065.
- El-Tantawy S., Abdulhai B. An agent-based learning towards decentralized and coordinated traffic signal control 2010.pp. 665–670.
- Varaiya P. The Max-Pressure Controller for Arbitrary Networks of Signalized Intersections Complex Networks and Dynamic Systems // Complex Networks and Dynamic Systems. New York, NY: Springer New York, 2013. pp. 27–66.
- Genders W., Razavi S. An Open-Source Framework for Adaptive Traffic Signal Control // arXiv:1909.00395. 2019.
- Мясников В.В., Агафонов А.А., Юмаганов А.С. Детерминированная прогнозная модель управления сигналами светофоров в интеллектуальных транспортных и геоинформационных системах // Компьютерная оптика. 2021. Т. 45. № 6. С. 917–925.
- Abdulhai B., Pringle R., Karakoulas G. Reinforcement Learning for True Adaptive Traffic Signal Control // Journal of Transportation Engineering. 2003. (129).
- Wei H. et al. IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic Light Control London United Kingdom: ACM, 2018. pp. 2496–2505.
- Wang X. et al. Large-Scale Traffic Signal Control Using a Novel Multiagent Reinforcement Learning // IEEE Transactions on Cybernetics. 2021. vol. 1. no. 51. pp. 174–187.
- Agafonov A., Myasnikov V. Traffic Signal Control: A Double Q-learning Approach 2021. pp. 365–369.
- Schulman J. et al. Proximal Policy Optimization Algorithms // arXiv:1707.06347. 2017.
- Ault J., Hanna J.P., Sharon G. Learning an Interpretable Traffic Signal Control Policy // arXiv:1912.11023. 2020.
- Li Y., He J., Gao Y. Intelligent Traffic Signal Control with Deep Reinforcement Learning at Single Intersection. 2021. pp. 399–406.
- Yang J., Zhang J., Wang H. Urban Traffic Control in Software Defined Internet of Things via a Multi-Agent Deep Reinforcement Learning Approach // IEEE Transactions on Intelligent Transportation Systems. 2021. vol. 6. no 22. pp. 3742–3754.
- Yang S. et al. IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection traffic signal control // Neural Networks. 2021. vol 139. pp. 265–277.
- Haarnoja T. et al. Soft Actor-Critic Algorithms and Applications // arXiv:1812.05905. 2019.
- Yau K.-L.A. et al. A survey on Reinforcement learning models and algorithms for traffic signal control // ACM Computing Surveys. 2017. vol. 3. 50 p.
- Wei H. et al. A Survey on Traffic Signal Control Methods // arXiv:1904.08117. 2020.
- Haydari A., Yilmaz Y. Deep Reinforcement Learning for Intelligent Transportation Systems: A Survey // IEEE Transactions on Intelligent Transportation Systems. 2022. vol. 1. no. 23. pp. 11–32.
- Fang S. et al. Trajectory Planning Method for Mixed Vehicles Considering Traffic Stability and Fuel Consumption at the Signalized Intersection // Journal of Advanced Transportation. 2020. pp. 1–10.
- Guo Y., Ma J. DRL-TP3: A learning and control framework for signalized intersections with mixed connected automated traffic // Transportation Research Part C: Emerging Technologies. 2021. vol. 132. pp. 103416.
- Zhang L., Wang Y., Zhu H. Theory and Experiment of Cooperative Control at Multi-Intersections in Intelligent Connected Vehicle Environment: Review and Perspectives // Sustainability. 2022. vol. 3. no. 14. pp. 1542.
- Agafonov A., Yumaganov A., Myasnikov V. Adaptive Traffic Signal Control Based on Maximum Weighted Traffic Flow // 2022 International Conference on Information Technology and Nanotechnology (ITNT). pp. 1–4.
- Krauß S. Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics. – 1998.
- RESCO. URL: https://github.com/Pi-Star-Lab/RESCO (дата обращения: 30.05.2022).
Supplementary files
