Restoration of Semantic-Based Super-Resolution Aerial Images
- Authors: Favorskaya M.N1, Pakhirka A.I1
-
Affiliations:
- Reshetnev Siberian State University of Science and Technology (Reshetnev University)
- Issue: Vol 23, No 4 (2024)
- Pages: 1047-1076
- Section: Artificial intelligence, knowledge and data engineering
- URL: https://journals.rcsi.science/2713-3192/article/view/265765
- DOI: https://doi.org/10.15622/ia.23.4.5
- ID: 265765
Cite item
Full Text
Abstract
About the authors
M. N Favorskaya
Reshetnev Siberian State University of Science and Technology (Reshetnev University)
Email: favorskaya@sibsau.ru
Krasnoyarsky Rabochy Ave. 31
A. I Pakhirka
Reshetnev Siberian State University of Science and Technology (Reshetnev University)
Email: pahirka@sibsau.ru
Krasnoyarsky Rabochy Ave. 31
References
- Фаворская М.Н. Аналитическое исследование моделей глубокого обучения для создания снимков ДЗЗ сверхвысокого разрешения // Обработка пространственных данных в задачах мониторинга природных и антропогенных процессов (SDM-2023): Сб. тр. Всероссийской конф. с междунар. участ. 2023. С. 17–25.
- Lepcha D.C., Goyal B., Dogra A., Goyal V. Image super-resolution: A comprehensive review, recent trends, challenges and applications // Information Fusion. 2023. vol. 91. pp. 230–260.
- Goodfellow I., Pouget-Abadie J., Mirza M., Xu, B., Warde-Farley D., Ozair S., Courville A., Bengio Y. Generative adversarial nets. Advances in Neural Information Processing Systems (NIPS 2014). 2014. vol. 27. pp. 1–9.
- Фаворская М.Н., Пахирка А.И. Улучшение разрешения снимков ДЗЗ на основе глубоких генеративно-состязательных сетей // Обработка пространственных данных в задачах мониторинга природных и антропогенных процессов (SDM-2023): Сб. тр. Всероссийской конф. с междунар. участ. 2023. С. 163–168.
- Conde M.V., Choi U.J., Burchi M., Timofte R. Swin2SR: SwinV2 transformer for compressed image super-resolution and restoration // Computer Vision – ECCV 2022 Workshops. LNCS. Springer, Cham. 2023. vol. 13802. pp. 669–687.
- Wang P., Bayram B., Sertel E. A comprehensive review on deep learning based remote sensing image super-resolution methods // Earth-Science Reviews. 2022. vol. 232(15). doi: 10.1016/j.earscirev.2022.104110.
- Qiu D., Cheng Y., Wang X. Medical image super-resolution reconstruction algorithms based on deep learning: A survey // Computer Methods and Programs in Biomedicine. 2023. vol. 238. doi: 10.1016/j.cmpb.2023.107590.
- Jiang J., Wang C., Liu X., Ma J. Deep learning-based face super-resolution: A survey // ACM Computing Surveys. 2021. vol. 55. no. 1. pp. 1–36.
- Liu H., Ruan Z., Zhao P., Dong C., Shang F., Liu Y., Yang L., Timofte R. Video super-resolution based on deep learning: A comprehensive survey // Artificial Intelligence Review. 2022. vol. 55. no. 8. pp. 5981–6035.
- Sun Y., Deng K., Ren K., Liu J., Deng C., Jin Y. Deep learning in statistical downscaling for deriving high spatial resolution gridded meteorological data: A systematic review // ISPRS Journal of Photogrammetry and Remote Sensing. 2024. vol. 208. pp. 14–38.
- Wang T., Sun W., Qi H., Ren P. Aerial image super resolution via wavelet multiscale convolutional neural networks // IEEE Geoscience and Remote Sensing Letters. 2018. vol. 15. no. 5. pp. 769–773.
- Xu W.-J., Xu G.-L., Wang Y., Sun X., Lin D.-Y., Wu Y.-R. High quality remote sensing image super-resolution using deep memory connected network. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018). 2018. pp. 8889-8892.
- Tang J., Zhang J., Chen D., Al-Nabhan N., Huang C. Single-frame super-resolution for remote sensing images based on improved deep recursive residual network // EURASIP J Image Video Proc. 2021. vol. 2021. doi: 10.1186/s13640-021-00560-8.
- Tang S., Liu J., Xie X., Yang S., Zeng W., Wang X. A stage-mutual-affine network for single remote sensing image super-resolution // Chinese Conference on Pattern Recognition and Computer Vision (PRCV). 2022. pp. 249–261.
- Wang S., Zhou T., Lu Y., Di H. Contextual transformation network for lightweight remote-sensing image super-resolution // IEEE Transactions on Geoscience and Remote Sensing. 2022. vol. 60. pp. 1–13. doi: 10.1109/TGRS.2021.3132093.
- Lei S., Shi Z., Mo W. Transformer-based multistage enhancement for remote sensing image super-resolution // IEEE Transactions on Geoscience and Remote Sensing. 2022. vol. 60. pp. 1–11. doi: 10.1109/TGRS.2021.3136190.
- Shang J., Gao M., Li Q., Pan J., Zou G., Jeon G. Hybrid-scale hierarchical transformer for remote sensing image super-resolution // Remote Sens. 2023. vol. 15. no. 13. pp. 1–20.
- Peng G., Xie M., Fang L. Context-aware lightweight remote-sensing image super-resolution network // Frontiers in Neurorobotics. 2023. vol. 17. doi: 10.3389/fnbot.2023.1220166.
- Li Y., Mavromatis S., Zhang F., Du Z., Sequeira J., Wang Z., Zhao X., Liu R. Single-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms // IEEE Transactions on Geoscience and Remote Sensing. 2021. vol. 60. pp. 1–24. doi: 10.1109/TGRS.2021.3093043.
- Guo M., Zhang Z., Liu H., Huang Y. NDSRGAN: A novel dense generative adversarial network for real aerial imagery super-resolution reconstruction // Remote Sens. 2022. vol. 14. no. 7. pp. 1–23. doi: 10.3390/rs14071574.
- Zhang J., Xu T., Li J., Jiang S., Zhang Y. Single-image super resolution of remote sensing images with real-world degradation modeling // Remote Sens. 2022. vol. 14. no. 12. pp. 1–22. doi: 10.3390/rs14122895.
- Haykır A.A., Oksuz I. Transfer learning based super resolution of aerial images // 2022 30th Signal Processing and Communications Applications Conference (SIU). 2022. pp. 1–4.
- Haykir A.A., Öksuz I. Super-resolution with generative adversarial networks for improved object detection in aerial images // Information Discovery and Delivery. 2023. vol. 51. no. 4. pp. 349–357.
- Tuna C., Unal G., Sertel E. Single-frame super resolution of remote-sensing images by convolutional neural networks // Int. J. Remote Sens. 2018. vol. 39. no. 8. pp. 2463–2479.
- Dong C., Loy C.C., He K., Tang, X. Learning a deep convolutional network for image super-resolution // Computer Vision – ECCV 2014: 13th European Conference. 2014. pp. 184–199.
- Wang J., Wang B., Wang X., Zhao Y., Long T. Hybrid attention-based U-shaped network for remote sensing image super-resolution // IEEE Transactions on Geoscience and Remote Sensing. 2023. vol. 61. pp. 1–15.
- Gu J., Dong C. Interpreting super-resolution networks with local attribution maps // Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021. pp. 9199–9208.
- Wang X., Yu K., Wu S., Gu J., Liu Y., Dong C., Qiao Y., Loy C.C. ESRGAN: Enhanced super-resolution generative adversarial networks // Computer Vision – ECCV 2018 Workshops. 2019. pp. 63–79.
- Johnson J., Alahi A., Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution // Computer Vision – ECCV 2016: 14th European Conference. 2016. pp. 694–711.
- Liu M., Chai Z., Deng H., Liu R. A CNN-transformer network with multiscale context aggregation for fine-grained cropland change detection // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2022. vol. 15. pp. 4297–4306.
- Xia G., Bai X., Ding J., Zhu Z., Belongie S., Luo J., Datcu M., Pelillo M., Zhang L. DOTA: A large-scale dataset for object detection in aerial images // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. pp. 3974–3983.
- Chen H., Shi Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection // Remote Sens. 2020. vol. 12. no. 10. doi: 10.3390/rs12101662.
- Lyu Y., Vosselman G., Xia G-S., Yilmaz A., Yang M.Y. UAVid: A semantic segmentation dataset for UAV imagery // ISPRS Journal of Photogrammetry and Remote Sensing. 2020. vol. 165. pp. 108–119.
- Airbus Aircraft Detection. URL: www.kaggle.com/datasets/airbusgeo/airbus-aircrafts-sample-dataset (дата обращения: 04.03.2024).
- Xia G.-S., Hu J., Hu F., Shi B., Bai X., Zhong Y., Zhang L. AID: A benchmark dataset for performance evaluation of aerial scene classification // IEEE Transactions on Geoscience and Remote Sensing. 2017. vol. 55. no. 7. pp. 3965–3981.
- Zhang R., Isola P., Efros A.A., Shechtman E., Wang O. The unreasonable effectiveness of deep features as a perceptual metric // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE: Salt Lake City, UT, USA. 2018. pp. 586–595.
Supplementary files
