The Issues of Creation of Machine-Understandable Smart Standards Based on Knowledge Graphs

Cover Page

Cite item

Full Text

Abstract

The development of digital transformation requires the widespread use of digital technologies in standardization documents. One of the goals is to create standards with machine-understandable content that will allow the use of digital documents at various stages of development and production without the need for a human operator. The purpose of this work is to describe an approach for creating and translating industry normative documents into a machine-understandable representation for their further use in software services and systems. There are three types of SMART standard content: machine-readable, machine-interpretable, and machine-understandable. Knowledge graphs are actively used to formalize data and knowledge when solving various problems. The new two-level approach is proposed for the creation and translation into a machine-understandable representation of regulatory documents as knowledge graphs. The approach defines two types of interpretation of a smart document (human readability and machine understandability) through two related formats: a graph, each semantic node of which represents text in a natural language, and a network of concepts and strict connections. Each node of a human-readable graph corresponds (in general) to a subtree of a machine-readable knowledge graph. As the basis for ensuring the transformation of one form of smart standard representation into another form, LLM models are used, supplemented by a specialized adapter obtained as a result of additional training using the Parameter-Efficient Fine-Tuning approach. Requirements have been established for a set of problem- and subject-oriented tools for generating knowledge graphs. The conceptual architecture of the system for supporting the solution of a set of problems based on knowledge graphs is shown, and the principles for implementing software components that work with smart knowledge for intelligent software services are established.

About the authors

E. A Shalfeeva

Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences

Email: shalf@dvo.ru
Radio St. 5

V. V Gribova

Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences

Email: gribova@iacp.dvo.ru
Radio St. 5

References

  1. Smart Standards – From a market and industry perspective // Societal and technology trend report. URL: https://www.iec.ch/system/files/2023-10/iec_sttr_smart_standards_en_lr_0.pdf (дата обращения: 18.03.2024).
  2. Елагин Ф.Н. Цифровые технологии стандартизации // Инновации и инвестиции. 2023. № 8. С. 243–246.
  3. Денисова О.А., Дмитриева С.Ю. SMART-стандарты: нормативные документы для цифровой экономики будущего // Стандарты и качество. 2023. № 6. С. 42–44.
  4. Предварительный национальный стандарт российской федерации. ПНСТ 864-2023. Умные (SMART) стандарты. Общие положения. Издание официальное. Москва: Российский институт стандартизации, 2023. URL: https://docs.cntd.ru/document/728306620 (дата обращения: 18.03.2024).
  5. Van de Kaa G., Stoccuto S., Calderón C.V. A battle over smart standards: Compatibility, governance, and innovation in home energy management systems and smart meters in the Netherlands // Energy Research & Social Science. 2021. vol. 82.
  6. Mutule A., Antoskova I., Papadimitriou C., Efthymiou V., Morch A. Development of Smart Grid Standards in View of Energy System Functionalities // 6th International Conference on Smart and Sustainable Technologies (SpliTech). IEEE, 2021. pp. 1–6. doi: 10.23919/SpliTech52315.2021.9566337.
  7. Peleg M. Computer-interpretable clinical guidelines: A methodological review // Journal of biomedical informatics. 2013. vol. 46. № 4. pp. 744–763.
  8. Young O., Shahar Y., Liel Y., Lunenfeld E., Bar G., Shalom E., Martins S., Vaszar L., Marom T., Goldstein M.K. Runtime application of Hybrid-Asbru clinical guidelines // Journal of biomedical informatics. 2007. vol. 40. no. 5. pp. 507–526.
  9. Novais P., Oliveira T., Satoh K., Neves J. The Role of Ontologies and Decision Frameworks in Computer-Interpretable Guideline Execution // Synergies between Knowledge Engineering and Software Engineering. 2018. vol. 626. pp. 197–216.
  10. Головин С.А., Лоцманов А.Н., Тихомиров С.Г. Цифровая трансформация стандартизации требует системного подхода и практических действий // ИТ-Стандарт. 2023. № 3. С. 4–22.
  11. Liu J., Peng G. Designing a Smart Standards Information Service: A Research Framework // International Conference on Human-Computer Interaction. Cham: Springer Nature Switzerland. 2023. pp. 348–365.
  12. Luttmer J., Ehring D., Pluhnau R., Kocks C., Nagarajah A. SMART Standards: Modularization Approach for Engineering Standards // Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 42nd Computers and Information in Engineering Conference. 2022. vol. 2(42). doi: 10.1115/DETC2022-88206.
  13. Zhong L., Wu J., Li Q., Peng H., Wu X. A Comprehensive Survey on Automatic Knowledge Graph Construction // ACM Computing Surveys. 2023. vol. 56. no. 4. pp. 1–62.
  14. Qu J. A Review on the Application of Knowledge Graph Technology in the Medical Field // Scientific Programming. 2022. vol. 2022. 12 p.
  15. Sezgin E., Hussain S.A., Rust S., Huang Y. Extracting medical information from free-text and unstructured patient-generated health data using natural language processing methods: feasibility study with real-world data // JMIR Formative Research. 2023. vol. 7.
  16. Melnyk I., Dognin P., Das P. Knowledge graph generation from text // arXiv preprint. 2022. arXiv:2211.10 511v1. 13 p.
  17. Ibáñez L-D., Domingue J., Kirrane S., Seneviratne O., Third A., Vidal M-E. Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination // arXiv preprint. 2023. arXiv:2310.19503. 33 p. doi: 10.48550/arXiv.2310.19503.
  18. Sajid H. Combining Large Language Models and Knowledge Graphs. URL: https://www.wisecube.ai/blog/combining-large-language-models-and-knowledge-graphs/ (дата обращения: 15.03.2024).
  19. Грибова В.В., Москаленко Ф.М., Тимченко В.А., Шалфеева Е.А. Платформа IACPaaS для разработки систем на основе онтологий: десятилетие использования // Искусственный интеллект и принятие решений. 2022. № 4. С 55–65.
  20. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 18. URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/064/610/original/ВМР_COVID-19_V18.pdf (дата обращения: 15.03.2024).
  21. Клинические рекомендации. Острый инфаркт миокарда с подъемом сегмента ST электрокардиограммы. 2020. 157 с. URL: https://cardioweb.ru/files/glavny-kardiolog/rekomendation/%D0%9A%D0%BB%D0%B8%D0%BD_%D1%80%D0%B5%D0%BA%D0%BE%D0%BC%D0%B5%D0%BD%D0%B4%D0%B0%D1%86%D0%B8%D0%B8_%D0%9E%D0%9A%D0%A1_%D1%81_%D0%BF%D0%BE%D0%B4%D1%8A%D0%B5%D0%BC%D0%BE%D0%BC_ST_2020.pdf (дата обращения: 18.03.2024).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).