An Approach to a Priori Assessment of Fuzzy Classification Models in Monitoring Tasks

Cover Page

Cite item

Full Text

Abstract

The article addresses the problems of using automation tools to perform monitoring and management tasks applicable to assessing the quality of fuzzy classification models, where the classification procedure is implemented on the basis of knowledge (rules) in the absence of the training set. An approach is proposed to obtain a priori assessments of the classification quality based on the study of the used model sensitivity to changes in the values of internal parameters during the corresponding modeling. The interpretation of the modeling results in the form of risk assessment caused by the self-imperfection of the classification models is obtained. The article provides an example of a fuzzy classification model based on a comparison of the current state of a monitoring object described using fuzzy features with a set of predefined typical states, which form corresponding fuzzy equal (close) states (monitoring situations). The comparison is carried out using the fuzzy implication operation provided that the required reliability is met. The example of this model demonstrates how the type of implication operation, as well as the internal features of the model, affect the results of classification, and appropriate indicators are proposed, which are both an interpretation of generally accepted indicators for assessing the classification quality, and unique, inherent in the considered model. Computational experiments were carried out, which made it possible to obtain graphs of changes in classification quality assessment indicators for the considered model and its modification and visualize the influence of internal parameters of the model on the results of its application. A number of indicators are proposed that allow for an a priori assessment of the risks arising from the application of the model before its actual application.

About the authors

A. A Potyupkin

Mozhaysky Military Space Academy

Email: vka@mil.ru
Zhdanovskaya St. 13

S. V Pilkevich

Mozhaysky Military Space Academy

Email: vka@mil.ru
Zhdanovskaya St. 13

V. V Zaytsev

Mozhaysky Military Space Academy

Email: vka@mil.ru
Zhdanovskaya St. 13

References

  1. Кривенко М.П., Васильев В.Г. Методы классификации данных большой размерности // М.: ИПИ РАН. 2013. 208 с.
  2. Hartmann J., Huppertz J., Schamp C., Heitmann M. Comparing automated text classification methods. International Journal of Research in Marketing. 2019. vol. 36(1). pp. 20–38.
  3. Belyadi H., Haghighat A. Machine Learning Guide for Oil and Gas Using Python. Gulf Professional Publishing, 2021. 476 p.
  4. Заде Л. Понятие лингвистической переменной и ее применение к принятию приближенных решений // М.: Мир. 1976. 167 с.
  5. Леоненков А.В. Нечеткое моделирование в среде MATLAB и fuzzyTECH // СПб.: БХВ-Петербург, 2005. 736 с.
  6. Tsoukalas L. Fuzzy Logic: Applications in Artificial Intelligence, Big Data, and Machine Learning // McGraw Hill. 2023. 176 p.
  7. van Krieken E., Acar E., van Harmelen F. Analyzing Differentiable Fuzzy Logic Operators. Artificial Intelligence. 2022. vol. 302. doi: 10.1016/j.artint.2021.103602.
  8. Мелихов А.Н., Бернштейн Л.С., Коровин С.Я. Ситуационные советующие системы с нечеткой логикой // М.: Наука, 1990. 272 с.
  9. Борисов В.В., Авраменко Д.Ю. Нечеткое ситуационное управление сложными системами на основе их композиционного гибридного моделирования // Системы управления, связи и безопасности. 2021. № 3. С. 207–237.
  10. Бакасов С.Р., Санаева Г.Н., Воронин Ю.А., Пророков А.Е., Богатиков В.Н. Управление технологической безопасностью промышленных процессов на основе мультиагентного моделирования // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. 2019. № 4. С. 37–45.
  11. Кривов М.В., Асламова Е.А., Асламова В.С. Система выработки стратегий управления промышленной безопасностью // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2022. № 59. С. 55–65.
  12. Мелихова О.А. Приложение матлогики к проблемам моделирования // Известия ЮФУ. Технические науки. 2014. № 7(156). С. 204–214.
  13. Старовойтов В.Г. Ситуационный центр как эффективный механизм в системе управления // Национальная безопасность / nota bene. 2021. № 5. С. 22–29.
  14. Шедий М.В. Становление и тенденции развития системы ситуационных центров как ключевого фактора повышения эффективности государственного управления // Вестник НГУЭУ. 2021. № 3. С. 8–18.
  15. Avdeeva Z., Kovriga S., Lepskiy V., Raikov A., Slavin B., Zatsarinny A. The Distributed Situational Centers System as an Instrument of State and Corporate Strategic Goal-Setting in the Digital Economy. IFAC-PapersOnLine. 2020. vol. 53(2). pp. 17499–17504.
  16. Kriesi H., Lorenzini J., Wuest B., Hausermann S. Contention in Times of Crisis: Recession and Political Protest in Thirty European Countries. Cambridge University Press. 2020. 300 p.
  17. Борисов В.В., Круглов В.В., Федулов А.С. Нечеткие модели и сети. 2-е изд., стереотип. // М.: Горячая линия – Телеком. 2012. 284 с.
  18. ГОСТ Р ИСО 31000-2019. Менеджмент риска. Принципы и руководство // М.: Госстандарт России. 2020.
  19. ISO 14971:2019. Medical devices – Application of risk management to medical devices. 2019.
  20. Fu S., Zhang Y., Zhang M., Han B., Wu Z. An object-oriented Bayesian network model for the quantitative risk assessment of navigational accidents in ice-covered Arctic waters. Reliability Engineering & System Safety. 2023. vol. 238. doi: 10.1016/j.ress.2023.109459.
  21. Hunte J., Neil M., Fenton N. A hybrid Bayesian network for medical device risk assessment and management. Reliability Engineering & System Safety. 2024. vol. 241. 16 p.
  22. Jiang M., Liu Y., Lu J., Qu Z., Yang Z. Risk assessment of maritime supply chains within the context of the Maritime Silk Road. Ocean & Coastal Management. 2023. vol. 231. 14 p.
  23. Молоканов Г.Г., Пинчук А.В., Потюпкин А.А. Нечётко-множественный подход к оцениванию целевых рисков при управлении развитием орбитальной группировки космических аппаратов // Труды ВНИИЭМ. Вопросы электромеханики. 2015. Т. 148. № 5. С. 19–23.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».