The possibilities and limitations of using artificial intelligence in shaping the digital competence of future computer science teachers

Cover Page

Cite item

Abstract

the article discusses the problem of the formation of digital competence of future computer science teachers in the context of digitalization of education. found. It has been established that artificial intelligence (AI) has great potential for personalizing learning, automating routine tasks, developing programming and problem-solving skills, as well as for the formation of digital competence in general. However, the use of AI in education is fraught with ethical issues, risks of digital inequality, and dependence on technology. The results of the article are the analysis of the pedagogical potential of AI in the formation of the digital competence of future computer science teachers, the identification of opportunities and limitations of the use of AI in the educational process. Artificial intelligence is a tool that can significantly improve the quality of education and contribute to the formation of the digital competence of future computer science teachers. However, its use requires a balanced and responsible approach, taking into account both the capabilities and limitations of this technology. The condition for successful integration of AI into the educational process is to ensure a balance between technological innovations and traditional pedagogical methods, to preserve "live" communication between the teacher and the student, as well as to develop critical thinking and digital literacy among future teachers, necessary for the effective and conscious use of AI in their professional activities.

About the authors

V. V Aleshov

Kherson State Pedagogical University

Email: aleshovvladimyr@yandex.ru

References

  1. Бороненко Т.А., Федотова В.С. Концептуальная модель процесса профессиональной подготовки учителя информатики к педагогическому проектированию в цифровой образовательной среде // Педагогика. Вопросы теории и практики. 2023. Т. 8. № 4. С. 396 – 406.
  2. Бороненко Т.А., Федотова В.С. Развитие персонализированного обучения будущих педагогов через генерацию курсов с использованием искусственного интеллекта // Мир науки, культуры, образования. 2024. № 4 (107). С. 29 – 33.
  3. Игнатьева Э.А., Келдибекова А.О. Педагогические подходы, основанные на применении искусственного интеллекта в образовательном процессе вуза // Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. 2024. № 2 (123). С. 118 – 126.
  4. Носова Л.С., Леонова Е.А., Селезнева Е.А., Радченко Т.А. Искусственный интеллект в формировании профессиональных компетенций будущих педагогов: монография. Челябинск: ЗАО «Библиотека А. Миллера», 2023. 175 с.
  5. Aktay S. The usability of Images Generated by Artificial Intelligence (AI) in Education // International technology and education journal. 2022. No. 6 (2). P. 51 – 62.
  6. Alhumaid K., Naqbi S., Elsori D., Mansoori M. The adoption of artificial intelligence applications in education // International Journal of Data and Network Science. 2023. No. 7 (1). P. 457 – 466.
  7. Awasthi S., Soni Y. Empowering Education System with Artificial Intelligence: Opportunities and Challenges. Shodh Samagam. 2023. No. 6 (1).
  8. Bykov V., Mikulowski D., Moravcik O., Svetsky S., Shyshkina M. The use of the cloud-based open learning and research platform for collaboration in virtual teams // Information Technologies and Learning Tools. 2020. No. 76 (2). P. 304 – 320.
  9. Carnevale A., Lombardi A., Lisi F.A., Brunello A., Croce D. A human-centred approach to symbiotic AI: Questioning the ethical and conceptual foundation. Intelligenza Artificiale. 2024. No. 18 (1). P. 9 – 20.
  10. Chaka C. Fourth industrial revolution – a review of applications, prospects, and challenges for artificial intelligence, robotics and blockchain in higher education. Research and Practice in Technology Enhanced Learning (RPTEL). 2023. No. 18 (2).
  11. Ding J., Akiki Ch., Jernite Ya., Steele A.L., Popo T. Towards Openness Beyond Open Access // User Journeys through 3 Open AI Collaboratives. 2023.
  12. Garc?a-Mart?nez I., Fern?ndez-Batanero J.M., Fern?ndez-Cerero J., Le?n S.P. Analysing the Impact of Artificial Intelligence and Computational Sciences on Student Performance: Systematic Review and Meta-analysis // Journal of New Approaches in Educational Research. 2023. No. 12 (1). P. 171 – 197.
  13. Glazunova O., Shyshkina M. The Concept, Principles of Design and Implementation of the University Cloud – based Learning and Research Environment // Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Workshops. 2018. Vol. 2. Р. 332 – 347.
  14. Hariri R. Artificial intelligence in education. Handbook of Research on Digital Content, Mobile Learning, and Technology Integration Models in Teacher Education. 2019. Р. 1 – 17.
  15. Khan M., Lulwani M. Inspiration of Artificial Intelligence in Adult Education: A Narrative Overview.
  16. Lee I., Lee J., Lee K., Lee J., Hwang J. Effectiveness of artificial intelligence in education: A systematic review // Journal of Educational Technology Society. 2019. No. 22 (3). P. 47 – 63.
  17. Uzwyshyn R.J. From Open Science and Datasets to AI and Discovery. Trends issues in library technology. 2023. Р. 26 – 38.
  18. Yilmaz R., Karakus T. Artificial intelligence-based educational applications: A systematic review of the literature // Journal of Educational Technology Society. 2020. No. 23 (3). Р. 1 – 15.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).