METEOROLOGICAL RESPONSE TO CHANGES IN IONOSPHERIC ELECTRIC POTENTIAL CAUSED BY DISTURBED SOLAR WIND

Cover Page

Cite item

Full Text

Abstract

The ionospheric electric potential (EP) is utilized as a characteristic of the solar forcing to determine the tropospheric response during strong disturbances. We compare EP calculations carried out using the 2001 and 2005 versions of the Weimer model. Differences in the spatial distribution of EP during geomagnetic superstorms have been revealed for the models considered. The behavior of EP anomalies and contrast averaged over high latitudes is shown. The EP contrast is the difference between EP anomalies averaged over regions of the same sign. It has been found that changes in EP anomalies differ in different versions of the model, whereas EP contrast variations, calculated by both versions, behave synchronously during disturbances. Correlation analysis of variations in the averaged EP contrast with variations in the PC geomagnetic index has shown that both can be used as indicators of solar activity to study individual geomagnetic superstorms. An increase in the EP contrast is accompanied by an increase in the contrast of the meteorological parameters, in particular in the contrast of high clouds during disturbances.

About the authors

Ashkhen Armenovna Karakhanyan

Institute of Solar-Terrestrial Physics SB RAS

Email: asha@iszf.irk.ru
candidate of physical and mathematical sciences

Sergey Ivanovich Molodykh

Institute of Solar Terrestrial Physics SB RAS

Email: sim@iszf.irk.ru
candidate of physical and mathematical sciences

References

  1. Абунина М.А., Шлык Н.С., Белов С.М. и др. О наиболее интересных событиях в солнечном ветре и космических лучах в 2023–2024 гг. Международная Байкальская молодежная научная школа по фундаментальной физике. Труды XVIII Конференции молодых ученых «Взаимодействие полей и излучения с веществом». Иркутск. 2024, с. 5–7. doi: 10.62955/0135-3748-2024-5.
  2. Криволуцкий А.А., Вьюшкова Т.Ю., Миронова И.А. Изменения химического состава в полярных областях Земли после протонных вспышек на Солнце (трехмерное моделирование). Геомагнетизм и аэрономия. 2017, т. 57, № 2, с. 173–194. doi: 10.7868/S0016794017020079.
  3. Молодых С.И., Жеребцов Г.А., Караханян А.А. Оценка влияния солнечной активности на уходящий поток инфракрасного излучения. Геомагнетизм и аэрономия. 2020, т. 60, № 2, с. 208–215. doi: 10.31857/S0016794020020108.
  4. Мохов И.И. Российские климатические исследования в 2019–2022 гг. Изв. РАН. Физика атмосферы и океана. 2023, т. 59, № 7, с. 830–851. doi: 10.31857/S0002351523070106.
  5. Пташник И.В. Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы. Оптика атмосферы и океана. 2015, т. 28, № 5, с. 443–459. doi: 10.15372/AOO20150508.
  6. Grechnev V.V., Uralov A.M., Chertok I.M., et al. A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. IV. Unusual magnetic cloud and overall scenario. Solar Phys. 2014, vol. 289, iss. 12, pp. 4653–4673. doi: 10.1007/s11207-014-0596-5.
  7. Harrison R.G., Lockwood M. Rapid indirect solar responses observed in the lower atmosphere. Proc. Roy. Soc. A. 2020, vol. 476, iss. 2241, 20200164. doi: 10.1098/rspa.2020.0164.
  8. Ishkov V.N. Properties and surprises of solar activity XXIII cycle. Sun and Geosphere. 2010, vol. 5, iss. 2, pp. 43–46.
  9. Ishkov V.N. Current solar cycle 25 on the eve of the maximum phase. Geomagnetism and Aeronomy. 2024, vol. 64, iss. 7, pp. 1167–1175. doi: 10.1134/S0016793224700257.
  10. Karakhanyan A.A., Molodykh S.I. A decline of linear relation between outgoing longwave radiation and temperature during geomagnetic disturbances. JASTP. 2025, vol. 270, iss. 5, 106503. doi: 10.1016/j.jastp.2025.106503.
  11. Mironova I.A., Aplin K.L., Arnold F., et al. Energetic particle influence on the Earth’s atmosphere. Space Sci. Rev. 2015, vol. 194, iss. 1-4, pp. 1–96. doi: 10.1007/s11214-015-0185-4.
  12. Simonova A.A., Ptashnik I.V., Elsey J., et al. Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption. Journal of Quantitative Spectroscopy and Radiative Transfer. 2022, vol. 277, iss. 1, 107957. doi: 10.1016/j.jqsrt.2021.107957.
  13. Tinsley B.A. The global atmospheric electric circuit and its effects on cloud microphysics. Reports on Progress in Physics. 2008, vol. 71, iss. 6, 066801. doi: 10.1088/0034-4885/71/6/066801.
  14. Troshichev O.A., Andrezen V.G., Vennerstrom S., Friis-Chri-stensen E. Magnetic activity in the polar cap – A new index. Planet. Space Sci. 1988, vol. 36, iss. 11, pp. 1095–1102. doi: 10.1016/0032-0633(88)90063-3.
  15. Veretenenko S.V., Dmitriev P.B., Dergachev V.A. Long-term effects of solar activity on cyclone tracks in the North Atlantic. St. Petersburg State Polytechnical University Journal: Physics and Mathematics. 2023a, vol. 16, iss. 1.2, pp. 454–460. doi: 10.18721/JPM.161.269.
  16. Veretenenko S.V., Dmitriev P.B., Dergachev V.A. Long-term changes main trajectories of extratropical cyclones in the North Atlantic and their possible association with solar activity. Geomagnetism and Aeronomy. 2023b, vol. 63, iss. 7, pp. 953–965. doi: 10.1134/s0016793223070265.
  17. Weimer D.R. An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J. Geophys. Res.: Space Phys. 2001, vol. 106, iss. A1, pp. 407–416. doi: 10.1029/2000JA000604.
  18. Weimer D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res. 2005, vol. 110, iss. A5, A05306. doi: 10.1029/2004JA010884.
  19. Wielicki B.A., Barkstrom B.R., Harrison E.F., et al. Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. American Meteorological Society. 1996, vol. 77, iss. 5, pp. 853–868. doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.
  20. URL: https://zenodo.org/records/2530324 (дата обращения 4 апреля 2025 г.).
  21. URL: https://omniweb.gsfc.nasa.gov/html/ow_data.html (дата обращения 4 апреля 2025 г.).
  22. URL: https://iszf.irk.ru/usu-optical-instruments/ (дата обращения 4 апреля 2025 г.).
  23. URL: https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp (дата обращения 4 апреля 2025 г.).
  24. URL: https://www.ipcc.ch/report/ar6/syr/ (дата обращения 4 апреля 2025 г.).
  25. URL: https://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html (дата обращения 4 апреля 2025 г.).
  26. URL: https://pcindex.org/ (дата обращения 4 апреля 2025 г.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).