MHD WAVES IN THE PRE-FRONT REGION OF THE INTERPLANETARY SHOCK ON MAY 10, 2024
- Authors: Starodubtsev S.A.1
-
Affiliations:
- Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS
- Issue: Vol 11, No 3 (2025)
- Pages: 56-64
- Section: 20th Annual Conference “Plasma Physics in the Solar System” February 10–14, 2025, Space Research Institute RAS
- URL: https://journals.rcsi.science/2712-9640/article/view/362425
- DOI: https://doi.org/10.12737/szf-113202507
- ID: 362425
Cite item
Full Text
Abstract
The article reports on the study of the dynamics of the IMF turbulent component from the quiet period on May 7, 2024 to the arrival of an interplanetary shock wave in the second half of May 10, 2024. To achieve the stated goal, 1-minute direct measurements of interplanetary medium parameters on the ACE, DSCOVR, and WIND spacecraft are involved in the analysis. Spectral analysis methods are used to study the evolution of power spectra of fluctuations in IMF modulus and MHD waves in the inertial portion of the SW turbulence spectrum at frequencies ~2.5∙10–4–8.3∙10–3 Hz. The contribution of Alfvén, fast, and slow magnetosonic waves to the observed power spectrum of the IMF modulus measured by each of the three spacecraft is determined, and power spectra of MHD waves of these types are identified. It is shown that the power of the spectra of fluctuations in the IMF modulus and MHD waves increases by more than an order of magnitude as the shock wave approaches the point of its recording on the spacecraft. It is concluded that this is due to the generation of MHD waves by fluxes of energetic storm particles (ESP) — cosmic rays with energies ~1 MeV, observed in the region ahead of the interplanetary shock wave front. Analysis of all measurement data allows for the assumption that a significant increase in low-energy CR fluxes (~1 MeV) and SW turbulence levels may lead to a change in the IMF direction in the region adjacent to the IPS front.
About the authors
Sergei Anatol'evich Starodubtsev
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS
Email: starodub@ikfia.ysn.ru
ORCID iD: 0000-0002-2343-1618
doctor of physical and mathematical sciences
References
Бережко Е.Г. Неустойчивость в ударной волне, распространяющейся в газе с космическими лучами. Письма в АЖ. 1986, т. 12, с. 842–847. Бережко Е.Г. Генерация МГД-волн в межпланетной плазме потоками солнечных космических лучей. Письма в АЖ. 1990, т. 16, № 12, с. 1123–1132. Бережко Е.Г., Стародубцев С.А. Природа динамики спектра флуктуаций космических лучей. Изв. АН СССР. Серия физическая. 1988, т. 52, с. 2361–2363. Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения. М.: Мир, 1971, вып. 1, 316 с. Коваленко В.А. Солнечный ветер. М.: Наука, 1983, 272 с. Отнес Р., Эноксон Л. Прикладной анализ временных рядов. Основные методы. М.: Мир, 1982, 430 с. Сапунова О.В., Бородкова Н.Л., Ермолаев Ю.И., Застенкер Г.Н. Спектры флуктуаций параметров плазмы солнечного ветра вблизи фронта ударной волны. Космические исследования. 2024, т. 62, № 1, с. 3–12. doi: 10.31857/S0023420624010018. Стародубцев С.А., Шадрина Л.П. МГД-волны в области предфронта межпланетных ударных волн 6 и 7 сентября 2017 г. Солнечно-земная физика. 2024, т. 10, № 3, c. 53–61. doi: 10.12737/szf-103202406 / Starodubtsev S.A., Shadrina L.P. MHD waves at the pre-front of interplanetary shocks on September 6 and 7, 2017. Sol.-Terr. Phys. 2024, vol. 10, iss. 3, pp. 50–57. doi: 10.12737/stp-103202406. Стародубцев С.А., Зверев А.С., Гололобов П.Ю., Григорьев В.Г. Флуктуации космических лучей и МГД-волны в солнечном ветре. Солнечно-земная физика. 2023, т. 9, № 2, с. 78–85. doi: 10.12737/szf-92202309 / Starodub-tsev S.A., Zverev A.S., Gololobov P.Yu., Grigoryev V.G. Cosmic ray fluctuations and MHD waves in the solar wind. Sol.-Terr. Phys. 2023, vol. 9, iss. 2, pp. 73–80. doi: 10.12737/stp-92202309. Топтыгин И.Н. Космические лучи в межпланетных магнитных полях. М.: Наука, 1983, 304 с. Чалов С.В. Неустойчивость диффузионной ударной волны в плазме с космическими лучами. Письма в АЖ. 1988, т. 14, № 3, с. 272–276. Borovsky J.E. A statistical analysis of the fluctuations in the upstream and downstream plasmas of 109 strong compression interplanetary shocks at 1 AU. J. Geophys. Res.: Space Phys. 2020, vol. 125, iss. 6, article id. e27518. doi: 10.1029/2019JA027518. Hu Q., Zank G.P., Li G., Ao X. A power spectral analysis of turbulence associated with interplanetary shock waves. AIP Conf. Ser. 1539, Proc. of the Thirteenth International Solar Wind Conf. 2013. 175. doi: 10.1063/1.4811016. Jain A., Trivedi R., Jain S., Choudhary R.K. Effects of the super intense geomagnetic storm on 10–11 May, 2024 on total electron content at Bhopal. Adv. Space Res. 2025, vol. 75, iss. 1, pp. 953–965. doi: 10.1016/j.asr.2024.09.029. Kim S., Oh S. Characteristics of interplanetary shock sheath regions in the solar wind inducing the Forbush decreases. J. Korean Astron. Soc. 2024, vol. 57. Lazzús J.A., Salfate I. Report on the effects of the May 2024 Mother’s day geomagnetic storm observed from Chile. J. Atmospheric and Solar–Terrestrial Physics. 2024, vol. 261, 106304. doi: 10.1016/j.jastp.2024.106304. Li G., Hu Q., Zank G.P. Upstream turbulence and the particle spectrum at CME-driven shocks. Proc. AIP Conf. “Physics of Collisionless Shocks”. 2005, vol. 781, pp. 233–239. doi: 10.1063/1.2032702. Luttrell A.H., Richter A.K. Power spectra of low frequency MHD turbulence up- and downstream of interplanetary fast shocks within 1 AU. Ann. Geophys. 1986, vol. 4, pp. 439–446. Luttrell A.H., Richter A.K. Study of MHD fluctuations upstream and downstream of quasiparallel interplanetary shocks. J. Geophys. Res. 1987, vol. 92, pp. 2243–2252. Neugebauer M., Wu C.S., Huba J.D. Plasma fluctuations in the solar wind. J. Geophys. Res. 1978, vol. 83, pp. 1027–1034. Pitna A., Safrankova J., Nemecek Z., et al. Turbulence upstream and downstream of interplanetary shocks. Frontiers in Physics. 2021, vol. 8, id. 654. doi: 10.3389/fphy.2020.626768. Ram T., Veenadhari S., Dimri B., et al. Super‐intense geomagnetic storm on 10–11 May 2024: Possible mechanisms and impacts. Space Weather. 2024, vol. 22, iss. 12, e2024SW004126. doi: 10.1029/2024SW004126. Reames D.V. Wave generation in the transport of particles from large solar flares. Astrophys. J. Lett. 1989, vol. 342, no. 1, Part 2, pp. L51–L53. Smith C.W., Vasquez B.J. Driving and dissipation of solar-wind turbulence: what is the evidence? Front. Astron. Space Sci. 2021, vol. 7, id. 114. doi: 10.3389/fspas.2020.611909. Smith C.W., Vasquez B.J. The unsolved problem of solar-wind turbulence. Front. Astron. Space Sci. 2024, vol. 11, id. 1371058. doi: 10.3389/fspas.2024.1371058. Vainio R. On the generation of Alfven waves by solar energetic particles. Astron. Astrophys. 2003, vol. 406, pp.735–740. URL: https://www.obsebre.es/php/geomagnetisme/vrapides/ssc_2024_p.txt (дата обращения 27 февраля 2025 г.). URL: https://www.nmdb.eu (дата обращения 27 февраля 2025 г.). URL: https://omniweb.gsfc.nasa.gov/form/dx1.html (дата обращения 27 февраля 2025 г.). URL: https://www.ysn.ru/ipm (дата обращения 27 февраля 2025 г.). URL: https://izw1.caltech.edu/ACE/ASC/level2/index.html (дата обращения 27 февраля 2025 г.). URL: https://omniweb.gsfc.nasa.gov/ftpbrowser/wind_min.merge.html (дата обращения 27 февраля 2025 г.). URL: https://services.swpc.noaa.gov/json/rtsw/rtsw_mag_1m.json (дата обращения 27 февраля 2025 г.). URL: https://services.swpc.noaa.gov/json/rtsw/rtsw_wind_1m.json (дата обращения 27 февраля 2025 г.). URL: https://sscweb.gsfc.nasa.gov/cgi-bin/Locator.cgi (дата обращения 27 февраля 2025 г.).
Supplementary files
