GEOMAGNETIC CUTOFF OF COSMIC RAYS DURING THE MARCH 23–24, 2023 MAGNETIC STORM: RELATIONSHIP WITH SOLAR WIND PARAMETERS AND GEOMAGNETIC ACTIVITY TAKING INTO ACCOUNT LATITUDINAL EFFECTS

Cover Page

Cite item

Full Text

Abstract

In this paper, we calculate geomagnetic cutoff rigidities during the strong magnetic storm of March 23–24, 2023, using 1) the spectrographic global survey method based on observational data from cosmic ray recording by the global network of stations (Rsgs); 2) numerical trajectory calculations in a model magnetic field of the magnetosphere (Reff). The geomagnetic cutoff rigidity has been determined for nine cosmic ray stations at different latitudes. We calculated the correlations of the variations in the geomagnetic cutoff rigidity ΔRsgs and ΔReff with magnetic and dynamic solar wind parameters and the geomagnetic activity indices Dst and Kp. It has been found that the geomagnetic cutoff rigidity calculated by both methods correlate most strongly with Dst and the electromagnetic parameters of the solar wind. No significant correlation with the dynamic parameters was observed. The analysis has shown that the response of ΔRsgs to the controlling magnetic parameters and Dst changes with latitude of the observation station: the correlation reaches its highest values at midlatitudes and drops significantly toward the equator. The correlations of ΔReff calculated by the model do not reveal a latitudinal dependence.

About the authors

Olga Aleksandrovna Danilova

St.-Petersburg Filial of IZMIRAN

Email: md1555@mail.ru
candidate of physical and mathematical sciences

Natalia Grigor'evna Ptitsyna

St.-Petersburg Filial of IZMIRAN

Email: nataliaptitsyna@yandex.ru
candidate of physical and mathematical sciences

Valeriy Evgen'evich Sdobnov

Institute of Solar Terrestrial Physics SB RAS

Email: sdobnov@iszf.irk.ru
doctor of physical and mathematical sciences

References

  1. Буров В.А., Мелешков Ю.С., Очелков Ю.П. Методика оперативной оценки уровня радиационной опасности, обусловленной возмущениями космической погоды, при авиаперевозках. Гелиогеофизические исследования. 2005, вып. 7, с. 1–41.
  2. Данилова О.А., Птицына Н.Г., Тясто М.И., Сдобнов В.E. Изменения жесткостей обрезания космических лучей во время бури 8–11 марта 2012 г. в период CAWSES-II. Солнечно-земная физика. 2023, т. 9, № 2, с. 86–93. doi: 10.12737/szf-92202310 / Danilova O.A., Ptitsyna N.G., Tyasto M.I., Sdobnov V.E. Variations in cosmic ray cutoff rigidities during the March 8–11, 2012 magnetic storm (CAWSES II period). Sol.-Terr. Phys. 2023, vol. 9, iss. 2, pp. 81–87. doi: 10.12737/stp-92202310.
  3. Куражковская Н.А., Зотов О.Д., Клайн Б.И. Связь развития геомагнитных бурь с параметром β солнечного ветра. Солнечно-земная физика. 2021, т. 7, № 4, с. 25–34. doi: 10.12737/szf-74202104 / Kurazhkovskaya N.A., Zotov O.D., Klain B.I. Relationship between geomagnetic storm development and the solar wind parameter β. Sol.-Terr. Phys. 2021, vol. 7, no. 4, pp. 25–34. doi: 10.12737/szf-74202104.
  4. Птицына Н.Г., Данилова О.А., Тясто М.И., Сдобнов В.Е. Влияние параметров солнечного ветра и геомагнитной активности на вариации жесткости обрезания космических лучей во время сильных магнитных бурь. Геомагнетизм и аэрономия. 2019, т. 59, № 5, с. 569–577. doi: 10.1134/S0016793219050098.
  5. Adriani O., Barbarino G.C., Bazilevskaya G.N., et al. PAMELA’s measurements of geomagnetic cutoff variations during the 14 December 2006 storm. Space Weather. 2016, vol. 14, no. 3. doi: 10.1002/2016SW001364.
  6. Akasofu S.-I. The magnetospheric currents: An introduction. In T.A. Potemra (Ed.), Magnetospheric currents. Geophysical Monograph Series. 1984, vol. 28, pp. 29–48. doi: 10.1029/GM028p0029.
  7. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, vol. 80, iss. 31, pp. 4204–4214. doi: 10.1029/JA080i031p04204.
  8. Dungey J.W. Interplanetary magnetic field and the auroral zones. Phys Rev Lett. 1961, vol. 6, pp. 47–48. doi: 10.1103/PhysRevLett.6.47.
  9. Iucci N., Levitin A.E., Belov A.V., et al. Space weather conditions and spacecraft anomalies in different orbits. Space Weather. 2005, vol. 3, S01001. doi: 10.1029/2003SW000056.
  10. Kanekal S., Baker D., Blake J., et al. High-latitude energetic particle boundaries and the polar cap: A statistical study. J. Geophys. Res.: Space Phys. 1998, vol. 103, pp. 9367–9372.
  11. Kovalev I.I., Olemskoy S.V., Sdobnov V.E. A proposal to extend the spectrographic global survey method. J. Atmos. Solar-Terr. Phys. 2022, vol. 235, p. 105887. doi: 10.1016/j.jastp.2022.105887.
  12. Leske R.A., Mewaldt R.A., Stone E.C., von Rosenvinge T.T. Observations of geomagnetic cutoff variations during solar energetic particle events and implications for the radiation environment at the space station. J. Geophys. Res. 2001, vol. 106, pp. 30011–30022. doi: 10.1029/2000JA000212.
  13. Shea M.A., Smart D.F., McCracken K.G. A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field. J. Geophys. Res. 1965, vol. 70, pp. 4117–4130.
  14. Shimazu H. Solar proton event and proton propagation in the Earth’s magnetosphere. J. National Institute of Information and Communications Technology. 2009, vol. 1, pp. 191–199.
  15. Tahir A., Wu F., Shah M., et al. Multi-instrument observation of the ionospheric irregularities and disturbances during the 23–24 March 2023 geomagnetic storm. Remote Sensing. 2024, vol. 16, no. 9, p. 1594. doi: 10.3390/rs16091594.
  16. Teng W., Su Y., Ji H., Zhan Q. Unexpected major geomagnetic storm caused by faint eruption of a solar transequatorial flux rope. Nature Communications. 2024, vol. 15, pp. 9198–9214. doi: 10.1038/s41467-024-53538-1.
  17. Tsyganenko N.A., Singer H.J., Kasper J.C. Storm-time distortion of the inner magnetosphere: How severe can it get? J. Geophys. Res. 2003, vol. 108, no. A5, p. 1209. doi: 10.1029/2002JA009808.
  18. Tyasto M.I., Danilova O.A., Sdobnov V.E. Cosmic ray geomagnetic cutoff rigidities in the magnetic field of two empirical models during a strong disturbance in November 2003: A comparison of models. Geomagnetism and Aeronomy. 2012, vol. 52, pp. 1087–1096. doi: 10.1134/S0016793212080208.
  19. Tyssøy H.N, Stadsnes J. Cutoff latitude variation during solar proton events: Causes and consequences. J. Geophys. Res. Space. 2014, vol. 120, pp. 553–563. doi: 10.1002/2014JA0200508.
  20. URL: https://omniweb.gsfc.nasa.gov/form/dx1.html (дата обращения 16 января 2024 г.).
  21. URL: http://omniweb.gsfc.nasa.gov (дата обращения 16 января 2024 г.).
  22. URL: http://ckp-rf.ru/ckp/3056/ (дата обращения 16 января 2024 г.).
  23. URL: https://ckp-rf.ru/usu/433536 (дата обращения 16 января 2024 г.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).