INFLUENCE OF INTERPLANETARY PARAMETERS ON THE DEGREE OF SYMMETRY OF THE RING CURRENT
- Авторлар: Makarov G.A.1
-
Мекемелер:
- Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS
- Шығарылым: Том 11, № 3 (2025)
- Беттер: 36-41
- Бөлім: 20th Annual Conference “Plasma Physics in the Solar System” February 10–14, 2025, Space Research Institute RAS
- URL: https://journals.rcsi.science/2712-9640/article/view/362421
- DOI: https://doi.org/10.12737/szf-113202504
- ID: 362421
Дәйексөз келтіру
Толық мәтін
Аннотация
The paper studies the influence of interplanetary factors on the degree of symmetry of the magnetospheric ring current. The geomagnetic indices SYM-H, ASY-H, and interplanetary parameters for the period 1981–2015 are considered. The indicator of the degree of symmetry of the ring current is the ratio SYM-H/ASY-H. Analysis is based on annual averages of geomagnetic and interplanetary parameters. This approach allows us to identify large-scale patterns. The relationships are examined of the degree of symmetry of the ring current and the indices SYM-H and ASY-H with the value B of the interplanetary magnetic field (IMF), the IMF north-south component Bn, and the solar wind velocity V. It is concluded that properties of magnetospheric ring currents are described by these indices more adequately when offsets in their values are taken into account than without regard for them. It is found that when offsets in ASY-H are considered the symmetric ring current prevails approximately twice over the asymmetric one for average conditions in the solar wind: V<550 km/s, B<10 nT, ǀBnǀ<2 nT. Under quiet solar wind conditions (V<450 km/s, B<5.5 nT, ǀBnǀ<0.7 nT), the degree of symmetry of the ring current increases. It is established that with intensification of interplanetary parameters (V, B, ǀBnǀ) the symmetric ring current index SYM-H grows more strongly than the asymmetric ring current index ASY-H.
Авторлар туралы
Georgy Makarov
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS
Email: gmakarov@ikfia.sbras.ru
candidate of physical and mathematical sciences
Әдебиет тізімі
Бархатов Н.А., Левитин А.Е., Церковнюк О.М. Анализ связи индексов, характеризующих симметричный SYM и асимметричный ASY кольцевой ток, с индексами активности авроральных электроструй AE (AU, AL). Геомагнетизм и аэрономия. 2008, т. 48, № 4, с. 520–525. Бахмина К.Ю., Калегаев В.В. Моделирование эффекта частичного кольцевого тока в возмущенной магнитосфере. Геомагнетизм и аэрономия. 2008, т. 48, № 6, с. 770–779. Бороев Р.Н., Васильев М.С. Связь ASY-H с параметрами межпланетной среды и авроральной активностью на главных фазах магнитных бурь во время CIR и ICME событий. Солнечно-земная физика. 2020, т. 6, № 1, с. 43–50. doi: 10.12737/szf-61202004 / Boroyev R.N., Vasiliev M.S. Relationship of the ASY-H index with interplanetary medium parameters and auroral activity in magnetic storm main phases during CIR and ICME events. Sol.-Terr. Phys. 2020, vol. 6, iss. 1, pp. 35–40. doi: 10.12737/stp-61202004. Калегаев В.В., Бахмина К.Ю., Алексеев И.И. и др. Асимметрия кольцевого тока во время магнитной бури. Геомагнетизм и аэрономия. 2008, т. 48, № 6, с. 780–792. Макаров Г.А. Геометрический фактор в сезонных вариациях среднесуточных значений геомагнитного индекса Dst. Солнечно-земная физика. 2020, т. 6, № 4. с. 59–66. doi: 10.12737/szf-64202008 / Makarov G.A. Geometric factor in seasonal variations of daily average values of the geomagnetic index Dst. Sol.-Terr. Phys. 2020, vol. 6, iss. 4, pp. 50–56. doi: 10.12737/stp-64202008. Макаров Г.А. Смещения значений геомагнитных индексов магнитосферного кольцевого тока. Солнечно-земная физика. 2021, т. 7, № 3, с. 31–38. doi: 10.12737/szf-73202103 / Makarov G.A. Offset in the geomagnetic indices of the magnetospheric ring current. Sol.-Terr. Phys. 2021, vol. 7, iss. 3, pp. 29–35. doi: 10.12737/stp-73202103. Макаров Г.А. Геомагнитные индексы ASY-H и SYM-H и их связь с межпланетными параметрами. Солнечно-земная физика. 2022, т. 8, № 4, с. 38–45. doi: 10.12737/szf-84202203 / Makarov G.A. Geomagnetic indices ASY-H and SYM-H and their relation to interplanetary parameters. Sol.-Terr. Phys. 2022, vol. 8, iss. 4, pp. 36–43. doi: 10.12737/stp-84202203. Макаров Г.А. Крупномасштабные связи геомагнитных индексов SYM-H и ASY-H с северо-южной компонентой ММП и бета-параметром солнечного ветра. Солнечно-земная физика. 2024, т. 10, № 3, с. 97–103. doi: 10.12737/szf-103202411 / Makarov G.A. Large-scale relationships of the geomagnetic indices SYM-H and ASY-H with the north-south IMF component and the solar wind beta parameter. Sol.-Terr. Phys. 2024, vol. 10, iss. 3, pp. 91–96. doi: 10.12737/stp-103202411. Alexeev I.I., Belenkaya E.S., Kalegaev V.V., et al. Magnetic storms and magnetotail currents. J. Geophys. Res. 1996, vol. 101, no. A4, pp. 7737–7747. doi: 10.1029/95JA03509. Bhaskar A., Vichare G. Forecasting of SYM-H and ASY-H indices for geomagnetic storms of solar cycle 24 including St. Patricks day, 2015 storm using NARX neural network. Journal of Space Weather and Space Climate. 2019, vol. 9, no. A12. doi: 10.1051/swsc/2019007. Haiducek J.D., Welling D.T., Ganushkina N.Y., et al. SWMF Global Magnetosphere Simulations of January 2005: Geomagnetic indices and cross-polar cap potential. Space Weather. 2017, vol. 15, pp. 1567–1587. Hakkinen L.V.T., Pulkkinen T.I., Pirjola R.J., et al. Seasonal and diurnal variation of geomagnetic activity: Revised Dst versus external drivers. J. Geophys. Res. 2003, vol. 108, no. A2, p. 1060. doi: 10.1029/2002JA009428. Iyemori T., Araki T., Kamei T., Takeda M. Mid-latitude geomagnetic indices ASY and SYM (Provisional) No. 1: 1989–1990. Data Analysis Center for Geomagnetism and Space Magnetism; Kyoto University, Japan, 1992, 240 р. Iyemori T., Takeda M., Nose M., et al. Mid-latitude geomagnetic indices ASY and SYM for 2009 (Provisional). Data Analysis Center for Geomagnetism and Space Magnetism; Kyoto University, Japan, 2010. URL: http://wdc.kugi.kyoto-u.ac.jp/aeasy/asy.pdf (дата обращения 5 октября 2021 г.). Maltsev Y.P., Arykov A.A., Belova E.G., et al. Magnetic flux redistribution in the storm time magnetosphere. J. Geophys. Res. 1996, vol. 101, no. A4, pp. 7697–7704. Namuun B., Tsegmed B., Li L.Y., Leghari G.M. Differences in the response to CME and CIR drivers of geomagnetic disturbances. Sol.-Terr. Phys. 2023, vol. 9, no. 2, pp. 35–40. doi: 10.12737/szf92202304 / Namuun B., Tsegmed B., Li L.Y., Leghari G.M. Differences in the response to CME and CIR drivers of geomagnetic disturbances. Sol.-Terr. Phys. 2023, vol. 9, iss. 2, pp. 31–36. doi: 10.12737/stp-92202304. Shi Y., Zesta E., Lyons L.R., et al. Statistical study of effect of solar wind dynamic pressure enhancements on dawn-to-dusk ring current asymmetry. J. Geophys. Res. 2006, vol. 111, A10216. doi: 10.1029/2005JA011532. Singh A.K., Sinha A.K., Pathan B.M., et al. Effect of prompt penetration on the low latitude ASY indices. J. Atmos. Solar-Terr. Phys. 2013, vol. 94, pp. 34–40. Takalo J., Mursula K. A model for the diurnal universal time variation of the Dst index, J. Geophys. Res. 2001, vol. 106, no. A6, pp. 10905–10914. Tsyganenko N.A., Sitnov M.I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res. 2005, vol. 110, A03208. doi: 10.1029/2004JA010798. Weygand J.M., McPherron R.L. Dependence of ring current asymmetry on storm phase. J. Geophys. Res. 2006, vol. 111, A11221. doi: 10.1029/2006JA011808. Zhao M.X., Le G.M., Lu J.Y. Can we estimate the intensities of great geomagnetic storms (ΔSYM-H≤–200 nT) with the Burton equation or the O’Brien and McPherron equation? Astrophys. J. 2022, vol. 928, p. 18. doi: 10.3847/1538-4357/ac50a8. URL: https://wdc.kugi.kyoto-u.ac.jp/index.html (дата обращения 29 марта 2025 г.). URL: http://omniweb.gsfc.nasa.gov/ (дата обращения 29 марта 2025 г.).
Қосымша файлдар
