Том 4, № 2 (2022)

Статьи

Опыт планирования и сопровождения сейсморазведочных работ 3D на примере месторождения Южно-Торгайского бассейна

Кенесары А.Ж., Көлдей М., Исламбердиев Ж.

Аннотация

Современное развитие технологий проведения сейсморазведочных полевых работ, методик обработки и интерпретации данных позволяют получить качественный материал не только для изучения структурных особенностей, но и для углубленного анализа анизотропии пород: детального понимания пространственной неоднородности литологических и петрофизических свойств, прогнозирования характера флюидонасыщения, анализа мелкодизъюнктивной тектоники, плотности и геометрии распространения трещиноватости. Немаловажным при проведении полевых сейсморазведочных работ и обработки является контроль качества на всех его этапах. Необходимо понимать, что контроль качества заключается в непосредственном участии в процессе работ от начала планирования сейсморазведочных работ до получения финального результата и интерпретации. В данной статье рассмотрена важность полного технического сопровождения сейсморазведки от планирования и дизайна полевых работ до выбора оптимального графа обработки, результаты которой в значительной степени окажут эффект на структурную и динамическую интерпретацию. На примере месторождения Южно-Торгайского бассейна продемонстрировано, как детально подобранный дизайн сейсморазведочных работ, использование новейших технологий полевых работ и обработки данных позволили получить более полную геолого-геофизическую информацию. В результате проведенных в 2021 г. работ все скважины, заложенные на основе новой сейсморазведки, получили промышленный приток углеводородов.
Вестник нефтегазовой отрасли Казахстана. 2022;4(2):3-10
pages 3-10 views

Формирование и сохранение коллекторов на больших глубинах

Куандыков Б.М., Сынгаевский П.Е., Хафизов С.Ф.

Аннотация

В статье рассматриваются условия формирования коллекторов, которые сохраняют свои свойства на больших глубинах, а также геологические особенности, которые являются необходимыми для их сохранности при погружении. Поскольку факторы, обеспечивающие сохранность, являются весьма многообразными, их оцифровка – дело довольно сложное; скорее следует говорить об учете множества факторов, сочетание которых, причем не обязательно сразу всех, является достаточным для того, чтобы прогнозировать существование залежей углеводородов, – и, значит, в первую очередь, коллекторов – на глубинах, которые стали технологически доступными, таким образом, расширить диапазон геологического прогноза, который технологически уже обеспечен.
Вестник нефтегазовой отрасли Казахстана. 2022;4(2):11-26
pages 11-26 views

Использование нейронных сетей при динамическом анализе сейсмических данных

Калиев Д.Т.

Аннотация

Нейронные сети и машинное обучение уже долгое время используются практически каждым человеком в повседневной жизни, возможно, не всегда осознанно. Когда алгоритм социальных сетей определяет лица людей на фото или голосовой помощник помогает нам в поиске какой-то информации, в основе всех этих действий лежат методы машинного обучения. Алгоритмы нейронных сетей не обошли стороной и область разведки и добычи нефти и газа. Данная статья ставит целью проиллюстрировать пример применения нейронных сетей при анализе сейсмических данных по действующему месторождению и прогнозировании петрофизических свойств для дальнейшей детализации геологической модели и выделения дополнительных скоплений углеводородов. Одним из ключевых условий для успешного прогнозирования петрофизических свойств с помощью нейронных сетей является широкая выборка скважинного материала для эффективного обучения нелинейного оператора. В данном случае в условиях действующего месторождения в наличии имелось более 100 скважин, что вполне отвечает требованиям алгоритма. Другим важным условием для данной методики является качественная сейсмостратиграфическая привязка скважин к сейсмике; данный этап работ будет также описан в рамках данной статьи. Особенностью нейросетевого анализа, в отличие от классической инверсии, является то, что здесь не используется сейсмический импульс: нейронная сеть подбирает такого оператора, который наилучшим образом описывает связь между несколькими сейсмическими трассами в области скважины и каротажной кривой. Данная особенность позволяет сократить время анализа и получать экспресс-результаты при соблюдении вышеописанных условий, что делает метод нейронных сетей эффективным инструментом динамического анализа сейсмических данных.
Вестник нефтегазовой отрасли Казахстана. 2022;4(2):27-34
pages 27-34 views

Применение геомеханики при строительстве горизонтальных скважин на месторождениях АО «Эмбамунайгаз»

Романенко П.С., Алехин И.Г., Ашимов К.Б., Губашев С.А.

Аннотация

В настоящее время в дальнем и ближнем зарубежье для увеличения добычи нефти активно развивается бурение горизонтальных скважин и ярким примером применения данного вида бурения в Казахстане, является компания АО «Эмбамунайгаз». В то же вре В настоящее время в дальнем и ближнем зарубежье для увеличения добычи нефти активно развивается бурение горизонтальных скважин, и ярким примером применения данного вида бурения в Казахстане является компания АО «Эмбамунайгаз». В то же время горизонтальное бурение – это достаточно сложный и дорогостоящий процесс, как и строительство глубоких разведочных скважин, требующий комплексного подхода к планированию и осуществлению работ. При подборе технологических параметров бурения, определении оптимальной конструкции скважин и других характеристик, необходимых для обеспечения целостности ствола скважин и в целом успешного их строительства, важнейшую роль играет геомеханическое моделирование. Модель механических свойств учитывает прочностные характеристики породы, направления горизонтальных напряжений геологической среды и многие другие аспекты, помогающие сделать бурение более безопасным, снизить риск осложнений и сохранить целостность ствола скважины. В данной работе описан процесс создания геомеханических моделей при строительстве сложных горизонтальных скважин на месторождениях АО «Эмбамунайгаз» на основе проведенных керновых геомеханических исследований на м. С. Нуржанов и анализа базы данных гидроразрыва пласта по месторождениям АО «Эмбамунайгаз». В результате был определен безопасный диапазон плотности бурового раствора («безопасное окно бурения»), выданы рекомендации по оптимизации технологических параметров бурения и конструкции скважин. мя, горизонтальное бурение — это достаточно сложный и дорогостоящий процесс, как и строительство глубоких разведочных скважин, требующий комплексного подхода к планированию и осуществлению работ. При подборе технологических параметров бурения, определения оптимальной конструкции скважин и других характеристик, необходимых для обеспечения целостности ствола скважин, и в целом успешного их строительства, важнейшую роль играет геомеханическое моделирование. Модель механических свойств учитывает прочностные характеристики породы, направления горизонтальных напряжений геологической среды и много других аспектов, помогающих сделать бурение более безопасным, снизить риск осложнений и сохранить целостность ствола скважины. В данной работе описан процесс создания геомеханических моделей при строительстве сложных горизонтальных скважин, на месторождениях АО «Эмбамунайгаз», на основе проведенных керновых геомеханических исследований на м-ии С.Нуржанов и анализа базы данных ГРП по месторождениям АО «ЭМГ», в результате чего был определен безопасный диапазон плотности бурового раствора «безопасное окно бурения», выданы рекомендации по оптимизации технологических параметров бурения и конструкции скважин.
Вестник нефтегазовой отрасли Казахстана. 2022;4(2):35-46
pages 35-46 views

Применение прокси-моделей при прогнозировании параметров разработки нефтяных залежей

Жетруов Ж.Т., Шаяхмет Қ.Н., Карсыбаев К.К., Бұлақбай А.М., Құлжанова С.Б.

Аннотация

Развитие цифровых технологий и вычислительных мощностей способствует ускоренной эволюции методов прогнозирования параметров разработки нефтяных и газовых залежей. Особенно важной вехой для нефтяной индустрии можно считать создание идеи и первые опыты применения искусственных нейронных сетей для разного рода прикладных задач: классификации геолого-технических мероприятий, автоматической интерпретации результатов геофизических исследований скважин и керна. На текущий момент актуальной и не до конца решенной задачей является применение машинного обучения для прогнозирования параметров разработки нефтяных залежей. Возникающие споры при попытках индустриального внедрения технологии связаны с так называемым «черным ящиком» – ситуацией, когда построенная модель не может объяснить физические законы, и в процессе расчета нелинейных зависимостей почти невозможно отследить промежуточные результаты. С учетом вышеописанных проблем на текущий момент лучшей практикой является совмещение моделей машинного обучения и физически содержательных аналитических моделей, описание которых приведено в данной работе.
Вестник нефтегазовой отрасли Казахстана. 2022;4(2):47-56
pages 47-56 views

Изучение применимости технологии пенных систем с целью выравнивания профиля приемистости паронагнетательных скважин месторождения Каражанбас

Есетжанов А.А., Жайлыбай А.К., Саенко О.Б., Сагындиков М.С.

Аннотация

Термические методы повышения нефтеотдачи пластов являются традиционным подходом при первичной и вторичной разработке месторождений тяжелой нефти. Несмотря на эффективность таких методов, за счет наличия высокопроницаемых каналов наблюдаются прорывы рабочего агента в добывающие скважины, приводящие к резкому увеличению обводнённости добываемой продукции и повышению температуры забоя скважин. В данной статье представлен литературный обзор мирового опыта применения различных технологий выравнивания профиля приёмистости в условиях паротеплового воздействия. На основе литературного обзора изучена применимость технологии пенных систем на месторождении Каражанбас, были проведены фильтрационные исследования по определению фактора сопротивления и коэффициента вытеснения. Полученные результаты подтвердили образование пены в пластовых условиях ростом сопротивления закачки при её фильтрации через образец керна и визуально на выходе из образца, прирост коэффициента вытеснения составил 17,41%. Научная новизна работы заключается в изучении применимости технологии выравнивания профиля приемистости с применением пены для условий месторождения Каражанбас, которая ранее не исследовалась и не была испытана ни на одном месторождении Казахстана.
Вестник нефтегазовой отрасли Казахстана. 2022;4(2):57-69
pages 57-69 views

Прогресс полимерных микросфер для регулирования профиля на нефтяных месторождениях

Шагымгереева С., Сарсенбекұлы Б., Кан В., Ян Х., Туртабаев С.К.

Аннотация

В течение последних десятилетий процессы длительного заводнения приводили к обводнению зрелых коллекторов, что является серьезной проблемой на нефтяных месторождениях. Разработка лучшей закупоривающей способности и экономически эффективных полимерных микросфер является ключевым аспектом для контроля избыточного производства воды. Исследования полимерных микросфер, применимых в гетерогенном резервуаре для закупорки высокопроницаемых каналов, значительно расширяются, о чем свидетельствуют многочисленные опубликованные научные статьи. В данном обзоре обсуждаются различные типы полимерных микросфер и эффективность вытеснения нефти. Также рассматриваются связанные с этим трудности и будущие перспективы полимерных микросфер. Данный обзор обеспечивает основу для разработки полимерных микросфер для будущего применения на нефтяных месторождениях и поможет исследователям в дальнейшей разработке полимерных микросфер для повышения нефтеотдачи зрелых коллекторов, которые будут соответствовать требованиям будущих нефтяных месторождений.
Вестник нефтегазовой отрасли Казахстана. 2022;4(2):70-85
pages 70-85 views

Закачка воды в газовую шапку: модификация системы разработки нефтяной оторочки в условиях шельфа

Подчувалова Е.Ю., Поляков Д.В., Шафиков Р.Р.

Аннотация

В статье представлены результаты научно-исследовательской работы по подготовке решения по закачке воды в газовую шапку на месторождении, расположенном на шельфе Каспийского моря. Выявлен практически значимый подход, разработаны концепция и необходимые условия для закачки воды в газовую шапку. Выполнен анализ влияния закачки воды в газовую шапку на скважины окружения. Сформирована программа по мониторингу эффективности закачки воды.
Вестник нефтегазовой отрасли Казахстана. 2022;4(2):86-94
pages 86-94 views

Сопоставление различных подходов численного моделирования методов интенсификации притока к скважине

Терентьев А.А., Дуркин С.М., Пчела К.В.

Аннотация

В данной работе рассматривается численное моделирование методов интенсификации притока к скважине с использованием различных подходов. Для моделирования солянокислотного воздействия был применен подход, основанный на изменении коэффициента продуктивности скважины, а также подход, который заключался в использовании химической реакции в гидродинамической модели. Критерием качественного прогнозирования технологических показателей разработки являлись фактические данные по одной из скважин месторождения-аналога рассматриваемого объекта. В результате расчетов на примере реального месторождения в условиях протяженных горизонтальных скважин получены приросты дополнительной добычи нефти при различных подходах моделирования процесса солянокислотной обработки. Выявлено, что в условиях протяженных горизонтальных скважин использование отрицательных значений скин-факторов кратно увеличивает добычу нефти по сравнению с подходом композиционного моделирования с протеканием химических реакций. Проведен анализ чувствительности к объему и концентрации закачанной кислоты с помощью специализированного программного обеспечения. Установлено, что в результате учета химической реакции при композиционном моделировании эффект от солянокислотной обработки существенно зависит от состава горной породы, скорости реакции, концентрации и объема закачанной кислоты. Многостадийный гидроразрыв пласта моделировался с использованием инструмента планарных систем трещин и модели дискретной системы трещин. Выявлено небольшое расхождение результатов расчета гидродинамической модели между данными методами моделирования многостадийного гидравлического разрыва пласта.
Вестник нефтегазовой отрасли Казахстана. 2022;4(2):95-100
pages 95-100 views

Результаты проведения трассерных исследований на единичных скважинах с разделяющими химическими индикаторами для оценки эффективности пав-полимерного воздействия на месторождении Холмогорское

Бондарь М.Ю., Осипов А.В., Громан А.А., Кольцов И.Н., Щербаков Г.Ю., Чебышева О.В.

Аннотация

Методы повышения нефтеотдачи в целом и ПАВ-полимерное заводнение в частности рассматриваются как третичные методы разработки зрелых нефтяных месторождений в Западной Сибири с потенциалом увеличения нефтеотдачи до 60–70% от начальных геологических запасов. Для выбора эффективной смеси поверхностно-активных веществ (далее – ПАВ) и полимера для ПАВ-полимерного воздействия были проведены лабораторные испытания, в ходе которых были протестированы: термическая стабильность, фазовое поведение, межфазное натяжение и реология составов. Также были проведены фильтрационные эксперименты для оптимизации объемов закачиваемых оторочек и концентраций реагентов в них. На конечном этапе для оценки эффективности ПАВ-полимерного воздействия на двух скважинах Холмогорского месторождения были проведены тесты на единичных скважинах с разделяющимися химическими трассерами (SWCTT). Чтобы исследовать разные технические и экономические модели ПАВ-полимерного воздействия, SWCTT-тесты были проведены с одним и тем же ПАВ, но с разным дизайном. Результаты проведенных SWCTT-тестов показали, что остаточная нефтенасыщенность в зоне воздействия после закачки ПАВ-полимерного раствора снизилась примерно на 11% по сравнению с заводнением, что составляет примерно треть остаточной нефти после заводнения. Испытанное ПАВ показало приемлемую эффективность при неоптимальных температурных условиях, что благоприятно для применения выбранной ПАВ-полимерной композиции для соседних месторождений и пластов с различными пластовыми температурами, но схожим составом воды. В целом, результаты проведенных полевых испытаний коррелируют с результатами основных лабораторных экспериментов для выбранного поверхностно-активного вещества.
Вестник нефтегазовой отрасли Казахстана. 2022;4(2):101-111
pages 101-111 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».