Application of proxy models for oil reservoirs performance prediction


Cite item

Full Text

Abstract

The evolution of oil and gas reservoirs development parameters prediction has received new opportunities due to the development of digital technologies and computing power. The idea and first experiments in the use of artificial neural networks for various kinds of applied problems as classification of workover actions, automatic interpretation of geophysical well logging and core analyses results can be considered as an important milestone for the oil industry. The application of machine learning for reservoir development parameters prediction is currently a pressing and unresolved issue. Disputes arising in attempts to industrialize this technology are associated with so-called “black box” – a situation when the constructed model cannot explain physical laws and it is almost impossible to track intermediate results in the process of calculating non-linear dependencies. Given the problems described above, the current best practice is to combine machine learning models and physically meaningful analytical models as described in this paper.

Full Text

Restricted Access

About the authors

Zh. T. Zhetruov

KMG Engineering LLP

Email: zh.zhetruov@niikmg.kz
руководитель службы по аналитике Nur-Sultan

K. N. Shayakhmet

KMG Engineering LLP

Email: k.shayakhmet@niikmg.kz
ведущий инженер службы по аналитике Nur-Sultan

Kuat K. Karsybayev

KMG Engineering LLP

Email: k.karsybayev@niikmg.kz
эксперт службы по аналитике Nur-Sultan

Azamat M. Bulakbay

KMG Engineering LLP

Email: a.bulakbay@niikmg.kz
ведущий инженер службы по аналитике Nur-Sultan

Sara B. Kulzhanova

KMG Engineering LLP

Email: s.kulzhanova@niikmg.kz
старший инженер службы по аналитике Nur-Sultan

References

  1. Bruce, W.A. An Electrical Device for Analyzing Oil-reservoir Behavior. – Pet. Technol., 1943, 151, р. 112–124. doi: 10.2118/943112-G.
  2. Wahl W.; Mullins L.; Barham R.; Bartlett W. Matching the Performance of Saudi Arabian Oil Fields with an Electrical Model. – J. Pet. Technol. 1962, 14, р.1275–1282. doi: 10.2118/414-PA
  3. Albertoni A.; Lake L.W. Inferring interwell connectivity only from well-rate fluctuations in waterfloods. – SPE Reserv. Eval. Eng., 2003, 6, р. 6–16. doi: 10.2118/83381-PA.
  4. Yousef A.A.; Gentil P.H.; Jensen J.L.; Lake L.W. A Capacitance Model to Infer Interwell Connectivity from Production and Injection Rate Fluctuations. – SPE Reserv. Eval. Eng., 2006, 9, р. 630–646. doi: 10.2118/95322-PA.
  5. Sayarpour M., Zuluaga E., Kabir C.S., Lake L.W. The use of capacitance-resistance models for rapid estimation of waterflood performance and optimization. – J. Pet. Sci. Eng., 2009, 69, р. 227–238. doi: 10.1016/j.petrol.2009.09.006.
  6. Kaviani D.; Jensen J.L.; Lake L.W. Estimation of interwell connectivity in the case of unmeasured fluctuating bottomhole pressures. – J. Pet. Sci. Eng., 2012, р. 90–91, 79–95. doi: 10.1016/j.petrol.2012.04.008.
  7. Soroush, M.; Kaviani, D.; Jensen, J.L. Interwell connectivity evaluation in cases of changing skin and frequent production interruptions. – J. Pet. Sci. Eng., 2014, 122, р. 616–630. doi: 10.1016/j.petrol.2014.09.001.
  8. Zhao H.; Kang, Z.; Zhang X.; Sun H.; Cao L.; Albert C. R. INSIM: A Data-Driven Model for History Matching and Prediction for Waterflooding Monitoring and Management with a Field Application – SPE Reserv. Simul. Symp., February 2015. Doi: https://doi.org/SPE-173213-MS
  9. Voronoi, G.F. Nouvelles applications des paramètres continus à la théorie de formes quadratiques. – Journal für die reine und angewandte Mathematik, 1908, 134. p. 198—287. DOI: https://doi.org/10.2118/205488-PA

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Zhetruov Z.T., Shayakhmet K.N., Karsybayev K.K., Bulakbay A.M., Kulzhanova S.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).