Application of proxy models for oil reservoirs performance prediction


如何引用文章

全文:

详细

The evolution of oil and gas reservoirs development parameters prediction has received new opportunities due to the development of digital technologies and computing power. The idea and first experiments in the use of artificial neural networks for various kinds of applied problems as classification of workover actions, automatic interpretation of geophysical well logging and core analyses results can be considered as an important milestone for the oil industry. The application of machine learning for reservoir development parameters prediction is currently a pressing and unresolved issue. Disputes arising in attempts to industrialize this technology are associated with so-called “black box” – a situation when the constructed model cannot explain physical laws and it is almost impossible to track intermediate results in the process of calculating non-linear dependencies. Given the problems described above, the current best practice is to combine machine learning models and physically meaningful analytical models as described in this paper.

全文:

受限制的访问

作者简介

Zh. Zhetruov

KMG Engineering LLP

Email: zh.zhetruov@niikmg.kz
руководитель службы по аналитике Nur-Sultan

K. Shayakhmet

KMG Engineering LLP

Email: k.shayakhmet@niikmg.kz
ведущий инженер службы по аналитике Nur-Sultan

Kuat Karsybayev

KMG Engineering LLP

Email: k.karsybayev@niikmg.kz
эксперт службы по аналитике Nur-Sultan

Azamat Bulakbay

KMG Engineering LLP

Email: a.bulakbay@niikmg.kz
ведущий инженер службы по аналитике Nur-Sultan

Sara Kulzhanova

KMG Engineering LLP

Email: s.kulzhanova@niikmg.kz
старший инженер службы по аналитике Nur-Sultan

参考

  1. Bruce, W.A. An Electrical Device for Analyzing Oil-reservoir Behavior. – Pet. Technol., 1943, 151, р. 112–124. doi: 10.2118/943112-G.
  2. Wahl W.; Mullins L.; Barham R.; Bartlett W. Matching the Performance of Saudi Arabian Oil Fields with an Electrical Model. – J. Pet. Technol. 1962, 14, р.1275–1282. doi: 10.2118/414-PA
  3. Albertoni A.; Lake L.W. Inferring interwell connectivity only from well-rate fluctuations in waterfloods. – SPE Reserv. Eval. Eng., 2003, 6, р. 6–16. doi: 10.2118/83381-PA.
  4. Yousef A.A.; Gentil P.H.; Jensen J.L.; Lake L.W. A Capacitance Model to Infer Interwell Connectivity from Production and Injection Rate Fluctuations. – SPE Reserv. Eval. Eng., 2006, 9, р. 630–646. doi: 10.2118/95322-PA.
  5. Sayarpour M., Zuluaga E., Kabir C.S., Lake L.W. The use of capacitance-resistance models for rapid estimation of waterflood performance and optimization. – J. Pet. Sci. Eng., 2009, 69, р. 227–238. doi: 10.1016/j.petrol.2009.09.006.
  6. Kaviani D.; Jensen J.L.; Lake L.W. Estimation of interwell connectivity in the case of unmeasured fluctuating bottomhole pressures. – J. Pet. Sci. Eng., 2012, р. 90–91, 79–95. doi: 10.1016/j.petrol.2012.04.008.
  7. Soroush, M.; Kaviani, D.; Jensen, J.L. Interwell connectivity evaluation in cases of changing skin and frequent production interruptions. – J. Pet. Sci. Eng., 2014, 122, р. 616–630. doi: 10.1016/j.petrol.2014.09.001.
  8. Zhao H.; Kang, Z.; Zhang X.; Sun H.; Cao L.; Albert C. R. INSIM: A Data-Driven Model for History Matching and Prediction for Waterflooding Monitoring and Management with a Field Application – SPE Reserv. Simul. Symp., February 2015. Doi: https://doi.org/SPE-173213-MS
  9. Voronoi, G.F. Nouvelles applications des paramètres continus à la théorie de formes quadratiques. – Journal für die reine und angewandte Mathematik, 1908, 134. p. 198—287. DOI: https://doi.org/10.2118/205488-PA

补充文件

附件文件
动作
1. JATS XML

版权所有 © Zhetruov Z.T., Shayakhmet K.N., Karsybayev K.K., Bulakbay A.M., Kulzhanova S.B., 2022

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».