Investigation of the crosslinking process of polymer materials to enchance the efficiency of waterproofing compounds

Cover Page

Cite item

Full Text

Abstract

Background: Currently, a significant portion of the oil fields in Kazakhstan are at the final stages of development, characterised by a steady decline in oil production and a progressive increase in water cut. These processes greatly diminish the efficiency of reservoir operation and make managing hydrocarbon displacement systems more complex. Under current conditions, technologies aimed at limiting and isolating water inflows are becoming increasingly relevant as a key element in enhancing the efficiency of field development. One promising approach in this area is the use of gel-polymer systems capable of selectively blocking highly permeable, water-saturated zones and redirecting filtration flows toward oil-saturated intervals. This allows for a significant increase in oil recovery and improves the technical and economic performance of reservoir development.

Aim: The study aims to investigate the cross-linking process of polymer gels and to evaluate the key parameters of this process using various methods.

Materials and methods: Special attention has been paid to the development and implementation of a rheological method for accurate quantitative determination of gel cross-linking time, which significantly enhances the objectivity and reproducibility of results compared to traditional visual assessment, which is currently the only generally accepted method.

Results: It has been established that visually complete crosslinking occurs in 1.5–2 hours after the preparation of solutions. At the same time, rheometric measurements showed that crosslinking occurred significantly earlier. This confirms the higher accuracy and sensitivity of the instrumental method.

Conclusion: The studies confirmed that rheometric methods allow high-precision determination of the time and degree of polymer crosslinking, which is impossible with visual assessment. This provides operators with more reliable information about the gel structure formation process and allows them to control the key parameters of gel formation at early stages. The data obtained emphasise the importance of rheometry as a reliable tool for objective evaluation of polymer crosslinking. Such evaluation plays a crucial role in the design and implementation of gel-polymer systems in oil recovery enhancement technology, especially in conditions of complicated geology and high water cut.

About the authors

Sultangali E. Abdykalykov

Branch of KMG Engineering “KazNIPImunaigaz”

Email: S.Abdykalykov@kmge.kz
ORCID iD: 0009-0008-2503-4537
Kazakhstan, Aktau

Valentina V. Sabaldash

Branch of KMG Engineering KazNIPImunaigaz

Author for correspondence.
Email: v.sabaldash@kmge.kz
ORCID iD: 0009-0004-0158-1852
Kazakhstan, Aktau

References

  1. Derendyaev RA, Zakharov LA, Martyushev DA, Derendyaev KA. Improving the efficiency of application of technology on water performance limitation based on geological and physical characteristics of the plates (on the example of deposits of The Perm Region). Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2019;330(9):154–163. doi: 10.18799/24131830/2019/9/2264. (In Russ).
  2. Dubinsky GS, Andreev VЕ, Akchurin KI, Kotenev YA. Development of technologies of restriction of water inflow in producering wells. Actual Problems of Oil and Gas. Available from: oilgasjournal.ru/vol_5/dubinsky.html. (In Russ).
  3. Sydansk RD. A Newly Developed Chromium(lll) Gel Technology. SPE Reservoir Engineering. 1990;5(03):346–352. doi: 10.2118/19308-PA.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Example of a visual evaluation of the gel condition

Download (412KB)
3. Figure 2. Appearance of automatic rheometer plates with 1 mm gap

Download (42KB)
4. Figure 3. The process of crosslinking a polymer system based on polymer 1 for 2 hours а) видимый гель не образуется / no visible gel forms; б) текучий гель / fluid gel; в) легкодеформируемый гель / easily deformable gel; г) слегка деформируемый, но не текучий гель / slightly deformable but not fluid gel; д) звенящий гель / ringing gel

Download (161KB)
5. Figure 4. Process of crosslinking a polymer system based on Polymer 2 for 1 h 40 min а) видимый гель не образуется / no visible gel forms; б) гель с высокой текучестью / highly fluid gel; в) текучий гель / fluid gel; г) умеренно текучий гель / moderately fluid gel

Download (479KB)
6. Figure 5. Test results of the Polymer 1 solution obtained using an automatic rheometer

Download (122KB)
7. с использованием автоматического реометра Figure 6. Test results for a polymer-based solution obtained using an automatic rheometer

Download (121KB)

Copyright (c) 2025 Abdykalykov S.E., Sabaldash V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».