Background: In the presented article, a composition is proposed that leads to the intensification and increase in oil production with an increase in temperature in the reservoir, as well as in the bottomhole zone. Aim: To study the improvement of methods for influencing deposits and bottom-hole zones of both production and injection wells, which allow completely displacing oil from the reservoir, as well as increasing oil production in general, thereby contributing to an increase in the final oil recovery factor of the reservoirs. Materials and methods: Based on laboratory studies, a new technology has been developed and a composition has been proposed, which includes a strong oxidizing agent, lower alcohols and trihydric alcohol, surfactants, etc. Results: The composition proposed for influencing the reservoir acts as follows: when the components of the composition interact, an exothermic reaction occurs, as a result of which a large amount of heat and gas is released in the bottomhole zone. Due to the released heat, heavy oil components are melted, deposited on the pore channels of the rock near the bottomhole zone and worsening the permeability of the bottomhole rock zone and reservoir injectivity. As a result of the impact of the composition, the permeability of the bottomhole zone and the injectivity of the injection well increase. Such an impact is also effective in that there is no loss of generated heat as a result of the exothermic reaction, and it directly affects the restoration of the permeability of the bottomhole formation zone and improves the rheological properties of oil. Conclusion: Conducted experiments have shown that, due to the effect of the proposed composition on clay rocks, clays do not swell, but, on the contrary, hydrophobization of the rock surface occurs due to clay compression, which prevents the subsequent negative impact of water on clay rocks. The reason for this incident is the acidic nature of the proposed composition. These properties of the proposed composition are a guarantee that its use in any formations (sandy, clayey, carbonate, dolomites, etc.) will be effective. Key words: bottomhole formation zone, permeability, strong oxidizing agent, lower alcohols, trihydric alcohol, surfactants.