Oil and Algorithms: How Artificial Intelligence turns Data into Energy

Cover Page

Cite item

Full Text

Abstract

The article explores the application of Artificial intelligence in the oil industry, focusing on the transformation of data into new energy sources. Artificial intelligence is used to optimize oil extraction and refining processes, contributing to increased productivity, reduced costs, and enhanced safety. The implementation of innovative algorithms, such as machine learning and the Internet of Things, significantly improves forecasting accuracy, the identification of hidden patterns, and process automation. These technologies help effectively manage risks, minimize costs, and accelerate operations, while also enhancing environmental sustainability. Artificial intelligence promotes the rational use of natural resources and reduces environmental impact, improving both economic and environmental performance of oil companies. Overall, the use of Artificial intelligence in the oil industry opens up new opportunities for more efficient and environmentally friendly production, making processes more sustainable in the long term. 

About the authors

Aigerim B. Seitimbetova

Karaganda Buketov University

Email: sab.buketov.2022@gmail.com
ORCID iD: 0009-0000-8755-7992
Kazakhstan, Karaganda

Alevtina S. Shulgina-Tarachshuk

Karaganda Buketov University

Author for correspondence.
Email: alevtinash79@mail.ru
ORCID iD: 0009-0000-4759-9389
Kazakhstan, Karaganda

Aizhan S. Smailova

Karaganda Buketov University

Email: smailova.buketov@gmail.com
ORCID iD: 0000-0003-2936-0336
Kazakhstan, Karaganda

References

  1. Smith J. Modern Technologies in Oil and Gas Industry. New York: Science Publishing; 2021. 350 p.
  2. Brown TL. Artificial Intelligence: Challenges and Future Prospects. London: Academic Press; 2021. 220 p.
  3. Kolbikova ES. lithofacial analysis and possibilities for prediction of properties on geophysical research and seismic exploration data by methods of machine learning. Kazakhstan Journal for Oil and Gas Industry. 2021;3(4):34–39. doi: 10.54859/kjogi99690.
  4. Zhetruov ZT, Shayakhmet KN, Karsybayev KK, et al. Application of proxy models for oil reservoirs performance prediction. Kazakhstan journal for oil & gas industry. 2022;4(2):48–57. doi: 10.54859/kjogi108021.
  5. Williams RG. Energy and Environment: The New Paradigms. Los Angeles: Energy Books; 2022. 280 p.
  6. Johnson PD. The Future of Oil and Gas: Sustainable Solutions. Chicago: Global Energy Publishers; 2022. 310 p.
  7. Miller AJ. Digitalization in Energy: Technologies and Strategies. San Francisco: Energy Solutions; 2023. 260 p.
  8. Taylor MC. Artificial Intelligence in the Energy Sector. Boston: Tech Innovations; 2023. 230 p.
  9. Davis BP. Innovative Methods in Oil Exploration and Extraction. Houston: Oil & Gas Press; 2022. 375 p.
  10. Wilson CA. Smart Energy Systems: Artificial intelligence and Beyond. Oxford: Future Energy Publications; 2022. 300 p.
  11. Evans RJ. Energy Markets and Artificial Intelligence: A New Era. Cambridge: Energy Insights; 2021. 320 p.
  12. Dutta D, Upreti SR. Artificial intelligence-based process control in chemical, biochemical, and biomedical engineering. Canadian Journal of Chemical Engineering. 2021;99(11):2467–2504. doi: 10.1002/cjce.24246.
  13. Terkina A. Use of information technology by engineers in the oil and gas industry. Recent Achievements and Prospects of Innovations and Technologies. 2022;1:122–128.
  14. Grimberg H, Tiwari VS, Tam B, et al. Machine learning approaches to optimize small-molecule inhibitors for RNA targeting. Journal of Cheminformatics. 2022;14(1):1–15. doi: 10.1186/s13321-022-00583-x.
  15. Gallegos M, Vassilev-Galindo V, Poltavsky I, et al. Explainable chemical artificial intelligence from accurate machine learning of real-space chemical descriptors. Nature Communications. 2024;15:4345. doi: 10.1038/s41467-024-48567-9.
  16. Parker DL. Artificial Intelligence and the Future of Energy. Toronto: GlobalTech; 2023. 210 p.
  17. Abisha JJ, Janaki M. Cyber security for chemical plant using artificial intelligence. International Journal of Computer Science and Mobile Computing. 2024;13(5):116–129. doi: 10.47760/ijcsmc.2024.v13i05.012.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Program

Download (515KB)
3. Figure 2. Actual vs. Predicted Oil Output

Download (48KB)
4. Figure 3. Visualization of Pressure, Temperature and Oil Output

Download (48KB)

Copyright (c) 2025 Seitimbetova A.B., Shulgina-Tarachshuk A.S., Smailova A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».