Prospects for enhancing hydraulic fracturing efficiency through the use of advanced proppants in the Atyrau region fields

Cover Page

Cite item

Full Text

Abstract

Background: The history of hydraulic fracturing in the Atyrau region's fields spans over 20 years; however, the types and functional characteristics of proppants – the main material used in HF – have remained unchanged. Given the rapid pace of technological advancement and the growing need to optimize production processes, the relevance of studying new types of proppants becomes obvious. The ability to model and customize high-tech proppants for the specific conditions of oil fields is crucial for enhancing hydraulic fracturing efficiency and, as a result, boosting hydrocarbon production volumes in the Atyrau region.

Aim: This article discusses recent advancements, global trends, practical experience, and laboratory studies related to the use of innovative proppants. It also evaluates the potential for utilizing lightweight proppants at fields A and B. The aim of this study is to explore the possibilities of deploying multifunctional proppants to optimize hydraulic fracturing operations.

Materials and Methods: To address the set objectives, we developed a model of the geomechanical and filtration properties of the formation for fields A and B using FracPro software. Also, we conducted a simulation of the hydraulic fracturing design with various injection parameters . Based on the results of hydraulic fracturing modeling results using lightweight proppants, we calculated indicators oil production .

Results: The simulation results demonstrate the economic feasibility of using lightweight proppants, evidenced by a 23.8% increase in additional production at Field A. For Field B, the estimated annual production volume significantly exceeds current levels, resulting in a 4.5-fold increase in profitability.

Conclusion: Multifunctional proppants hold considerable potential to enhance hydraulic fracturing efficiency. The application of innovative proppants allows for better control over fracture geometry, minimizes the risk of breakthrough into water-saturated zones, and increases the volume of stimulated zone, thereby optimizing hydrocarbon production.

About the authors

Aidana N. Bukharbayeva

Atyrau branch of KMG Engineering

Author for correspondence.
Email: a.bukharbayeva@kmge.kz
ORCID iD: 0009-0001-3861-7888
Kazakhstan, Atyrau

Karim B. Assanov

Atyrau branch of KMG Engineering

Email: k.asanov@kmge.kz
ORCID iD: 0009-0002-1005-6959
Kazakhstan, Atyrau

Adilbek A. Bashev

Atyrau branch of KMG Engineering

Email: a.bashev@kmge.kz
ORCID iD: 0009-0009-7050-7249
Kazakhstan, Atyrau

Talgat S. Jaksylykov

Atyrau branch of KMG Engineering

Email: t.jaxylykov@kmge.kz
ORCID iD: 0000-0002-1530-3974
Kazakhstan, Atyrau

Altynbek S. Mardanov

Atyrau branch of KMG Engineering

Email: a.mardanov@kmge.kz
ORCID iD: 0000-0002-8342-3046
Kazakhstan, Atyrau

References

  1. Smith M, Montgomery C. Hydraulic Fracturing. Boca Raton: CRC Press; 2015.
  2. Economides M, Oligney R, Valkó P. Unified Fracture Design. Alvin: Orsa Press; 2004.
  3. Kun A, Longchen D, Gao H, Guangliang J. Hydraulic Fracturing Treatment Optimization for Low Permeability Reservoirs Based on Unified Fracture Design. Energies. 2018;11(7):12–23. doi: 10.3390/en11071720.
  4. Al-Muntasheri G. A Critical Review of Hydraulic-Fracturing Fluids for Moderate to Ultralow-Permeability Formations Over the Last Decade. SPE Prod & Oper. 2014;29(04):243–260. doi: 10.2118/169552-PA.
  5. Danso DK, Negash BM, Ahmed TY, et al. Recent Advances in Multifunctional Proppant Technology and Increased Well Output with Micro and Nano Proppants. Journal of Petroleum Science and Engineering. 2021;196:108026. doi: 10.1016/j.petrol.2020.108026.
  6. Radwan A. A Multifunctional Coated Proppant: A Review of Over 30 Field Trials in Low Permeability Formations. SPE Annual Technical Conference and Exhibition; 2017 Oct 9–11; San Antonio, Texas, USA. Available from: https://onepetro.org/SPEATCE/proceedings-abstract/17ATCE/2-17ATCE/193346.
  7. Green J, Dewendt A, Terracina J, Abrams B. First Proppant Designed to Decrease Water Production. SPE Annual Technical Conference and Exhibition; 2018 Sept 24–26; Dallas, Texas, USA. Available from: https://onepetro.org/SPEATCE/proceedings-abstract/18ATCE/3-18ATCE/D032S061R003/214394.
  8. Dong K, He W, Wang M. Effect of surface wettability of ceramic proppant on oil flow performance in hydraulic fractures. Energy Science and Engineering. 2018;7(2):504–514. doi: 10.1002/ese3.297.
  9. Palisch T, Chapman M, Leasure J. Novel Proppant Surface Treatment Yields Enhanced Multiphase Flow Performance and Improved Hydraulic Fracture Clean-up. SPE Liquids-Rich Basins Conference; 2015 Sept 2–3; Midland, Texas, USA. Available from: https://onepetro.org/SPELRBC/proceedings-abstract/15LRBC/1-15LRBC/D012S009R003/184841.
  10. Bestaoui-Spurr N, Sun S, Williams V, et al. Using Properties in Nature to Modify Proppant Surfaces and Increase Flow. SPE International Conference on Oilfield ChemistryMontgomery; 2017 Apr 3–5; Montgomery, Texas, USA. Available from: https://onepetro.org/SPEOCC/proceedings-abstract/17OCC/2-17OCC/D021S007R005/195566.
  11. Bestaoui-Spurr N, Stanley D, Williams V, et al. Optimizing Proppant Surface Properties to Improve Formation Flow in Offshore Frac-Packs // Offshore Technology Conference; 2017 May 1–4; Houston, Texas, USA. Available from: https://onepetro.org/OTCONF/proceedings-abstract/17OTC/2-17OTC/D021S017R001/93802.
  12. Fan F, Li F-X, Tian S-C, et al. Hydrophobic epoxy resin coated proppants with ultra-high self-suspension ability and enhanced liquid conductivity. Petroleum Science. 2021;18(6):1753–1759. doi: 10.1016/j.petsci.2021.09.004.
  13. Saldungaray P, Palisch T, Leasure J. Can Proppants Do More Than Hold The Fracture Open? SPE Saudi Arabia Section Annual Technical Symposium and Exhibition; 2015 Apr 21–23; Al-Khobar, Saudi Arabia. Available from: https://onepetro.org/SPESATS/proceedings-abstract/15SATS/All-15SATS/SPE-177978-MS/196745.
  14. Gadekea LL, Smith HD. Trancerscan: A Spectroscopy Technique For Determining The Distribution Of Multiplte Radioactive Tracers In Downhole Operations. The Log Analysts. 1987;28(1).
  15. Duenckel RJ, Smith HD, Warren WA, Abram DG. Field Application of a New Proppant Detection Technology // SPE Annual Technical Conference and Exhibition; 2011 Oct 30 – Nov 2; Denver, Colorado, USA. Available from: https://onepetro.org/SPEATCE/proceedings-abstract/11ATCE/All-11ATCE/SPE-146744-MS/148522.
  16. Forno L, Latronico R, Saldungaray P, et al. Non-Radioactive Detectable Proppant First Applications in Algeria for Hydraulic Fracturing Treatments Optimization // SPE North Africa Technical Conference and Exhibition; 2015 Sept 14–16; Cairo, Egypt. Available from: https://onepetro.org/SPENATC/proceedings-abstract/15NATC/3-15NATC/D031S022R001/183604?redirectedFrom=PDF.
  17. Grae AD, Duenckel RJ, Nelson JR. Field Study Compares Fracture Diagnostic Technologies // SPE Hydraulic Fracturing Technology Conference; 2012 Feb 6–8; The Woodlands, Texas, USA. Available from: https://onepetro.org/SPEHFTC/proceedings-abstract/12HFTC/All-12HFTC/SPE-152169-MS/159703.
  18. Ortiz AC, Hryb DE, Martínez JR, Varela RA. Hydraulic Fracture Height Estimation in an Unconventional Vertical Well in the Vaca Muerta Formation Neuquen Basin, Argentina. SPE Hydraulic Fracturing Technology Conference; February 9–11, 2016; The Woodlands, Texas, USA. Available from: https://onepetro.org/SPEHFTC/proceedings-abstract/16HFTC/2-16HFTC/D021S006R006/187052.
  19. Liu J, Zhang F, Gardner RB, et al. A method to evaluate hydraulic fracture using proppant detection. Applied Radiation and Isotopes. 2015;105:139–143. doi: 10.1016/j.apradiso.2015.08.003.
  20. Yao S, Chang C, Hai K, et al. A review of experimental studies on the proppant settling in hydraulic fractures. Petroleum Science and Engineering. 2021;208(B):109211. doi: 10.1016/j.petrol.2021.109211.
  21. Churakov AV, Pichugin MN, Fayzulin IG, et al. Non-Guar Synthetic Hydraulic Fracturing Gels – Successful Concept of Choice. SPE Russian Petroleum Technology Conference; 2020 Oct 26–29; Virtual. Available from: https://onepetro.org/SPERPTC/proceedings-abstract/20RPTC/3-20RPTC/D033S010R005/450136?redirectedFrom=PDF.
  22. Mahoney RP, Soane D, Kincaid KP, et al. Self-Suspending Proppant. SPE Hydraulic Fracturing Technology Conference; 2013 Feb 4–6; Woodlands, Texas, USA. Available from: https://onepetro.org/SPEHFTC/proceedings-abstract/13HFTC/2-13HFTC/D021S005R007/173751?redirectedFrom=PDF.
  23. Goldstein B, VanZeeland A. Self-Suspending Proppant Transport Technology Increases Stimulated Reservoir Volume and Reduces Proppant Pack and Formation Damage. SPE Annual Technical Conference and Exhibition; 2015 Sept 28–30; Houston, Texas, USA. Available from: https://onepetro.org/SPEATCE/proceedings-abstract/15ATCE/1-15ATCE/180321.
  24. Cao W, Xie K, Lu X, et al. Self-suspending proppant manufacturing method and its property evaluation. Journal of Petroleum Science and Engineering. 2020;192:107251. doi: 10.1016/j.petrol.2020.107251.
  25. Isah A, Hiba M, Al-Azani K, et al. A comprehensive review of proppant transport in fractured reservoirs: Experimental, numerical, and field aspects. Journal of Natural Gas Science and Engineering. 2021;88:103832. doi: 10.1016/j.jngse.2021.103832.
  26. Brannon HD, Starks TR II. Maximizing Return on Fracturing Investment by Using Ultra-Lightweight Proppants to Optimize Effective Fracture Area: Can Less Really Deliver More? SPE Hydraulic Fracturing Technology Conference; 2009 Jan 19–21; Woodlands, Texas, USA. Available from: https://onepetro.org/SPEHFTC/proceedings-abstract/09HFTC/All-09HFTC/SPE-119385-MS/147598?redirectedFrom=PDF.
  27. Bestaoui-Spurr N, Hudson H. Ultra-Light Weight Proppant and Pumping Design Lead to Greater Conductive Fracture Area in Unconventional Reservoirs. SPE Oil and Gas India Conference and Exhibition; 2017 Apr 4–6; Mumbai, India. Available from: https://onepetro.org/SPEOGIC/proceedings-abstract/17OGIC/2-17OGIC/D021S009R003/197639.
  28. Han J, Pirogov A, Li C, et al. Maximizing Productivity with Ultra-Lightweight Proppant in Unconventional Wells: Simulations and Field Cases. SPE Asia Pacific Hydraulic Fracturing Conference; 2016 Aug 24–26; Beijing, China. Available from: https://onepetro.org/speaphf/proceedings-abstract/16APHF/2-16APHF/D022S010R048/185197.
  29. Chambers R, Meise K. Comparison of Fracture Geometries Utilizing Ultralightweight Proppants Provide Evidence That Partial Monolayers Can Be Created: A Case History. SPE Annual Technical Conference and Exhibition; 2005 Oct 9–12; Dallas, Texas, USA. Available from: https://onepetro.org/SPEATCE/proceedings-abstract/05ATCE/05ATCE/SPE-96818-MS/89316.
  30. Pavlova S, Demkovich M, Loginov A et al. Successful Implementation of Light Weight Proppant for Stimulation of Tight Sandstones in Russia on Vinogradova Oilfield. SPE Russian Petroleum Technology Conference; 2019 Oct 22–24; Moscow, Russia. Available from: https://onepetro.org/SPERPTC/proceedings-abstract/19RPTC/3-19RPTC/D033S020R004/219302.
  31. Liang F, Sayed M, Al-Muntasheri G, et al. A comprehensive review on proppant technologies. Petroleum. 2016;2(1):26–39. doi: 10.1016/j.petlm.2015.11.001.
  32. Chen T, Gao J, Zhao Y, et al. Progress of Polymer Application in Coated Proppant and Ultra-Low Density Proppant. Polymers. 2022;14(24):5534. doi: 10.3390/polym14245534.
  33. Zoveidavianpoor M, Gharibi A, Zaidi bin Jaafar M. Experimental characterization of a new high-strength ultra-lightweight composite proppant derived from renewable resources. Journal of Petroleum Science and Engineering. 2018;170:1038–1047. doi: 10.1016/j.petrol.2018.06.030.
  34. Rickards AR, Brannon HD, Wood WD, Stephenson CJ. Ultra-Lightweight Proppant Development Yields Exciting New Opportunities in Hydraulic Fracturing Design. SPE Annual Technical Conference and Exhibition; 2003 Oct 5–8; Denver, Colorado, USA. Available from: https://onepetro.org/SPEATCE/proceedings-abstract/03ATCE/03ATCE/SPE-84308-MS/137740.
  35. Sun W-Y, Yao X. Performance of resin coated unburned ultra-low density fracturing proppant. Bulletin of the Chinese ceramic society. 2015;34(10):2900–4. doi: 10.16552/j.cnki.issn1001-1625.2015.10.030. (In Chinese).
  36. Chen T, Wang Y, Yan C, Wang H. Preparation of heat resisting poly (methyl methacrylate)/silica fume composite microspheres used as ultra-lightweight proppants. Micro & Nano Letters. 2014;9(11):757–828. doi: 10.1049/mnl.2014.0486.
  37. Liang T, Yan C, Zhou S, et al. Carbon black reinforced PMMA-based composite particles: preparation, characterization, and application. Journal of Geophysics and Engineering. 2017;14(5):1225–1232. doi: 10.1088/1742-2140/aa6e7e.
  38. McDaniel G, Abbott J, Mueller F, et al. Changing the Shape of Fracturing: New Proppant Improves Fracture Conductivity. SPE Annual Technical Conference and Exhibition; 2012 Sept 19–22; Florence, Italy. Available from: https://onepetro.org/SPEATCE/proceedings-abstract/10ATCE/All-10ATCE/SPE-135360-MS/102149.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Results of the study of the height of hydraulic fractures

Download (133KB)
3. Figure 2. Proppant flow testing: silica sand [23]

Download (37KB)
4. Figure 3. Proppant flow testing: self-suspending proppant [23]

Download (38KB)
5. Figure 4. Comparison of propping material density [27–28, 34–38]

Download (38KB)
6. Figure 5. Distribution of proppant by fractions and manufacturers

Download (33KB)
7. Figure 6. Production dynamics after hydraulic fracturing at Well No. 1

Download (143KB)
8. Figure 7. Hydralic fracture profiles of Well No. 1

Download (316KB)
9. Figure 8. Comparison of actual and estimated oil production

Download (99KB)
10. Figure 9. Production dynamics after hydraulic fracturing at Well No.2

Download (104KB)
11. Figure 10. Hydraulic fracture profiles at Well No.2

Download (232KB)
12. Figure 11. Comparison of actual and estimated cumulative production

Download (131KB)

Copyright (c) 2024 Bukharbayeva A.N., Assanov K.B., Bashev A.A., Jaksylykov T.S., Mardanov A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».