Geomechanical modeling aspects in support of hydraulic fracturing operations

Cover Page

Cite item

Full Text

Abstract

This paper describes the main aspects and nuances of geomechanical modeling that must be considered when supporting hydraulic fracturing operations and providing engineering support of projects. A key feature of geomechanical modeling for hydraulic fractures aims or self-induced fracturing in mature fields is the estimation of reservoir pressure, particularly in the vicinity of production and injection wells. In addition, this has a significant impact on stress anisotropy, which is the primary factor affecting the geometry of the hydraulic fracture and the surrounding induced stress field. It is also crucial to monitor geomechanical core studies, ensure quality control of samples, and accurately process research results since the profiles of elastic-strength properties and stresses depend on these factors. This paper also addresses fracturing, including its measurement, calculations, and the prediction of its spatial orientation and intensity.

About the authors

Pavel V. Iastrebov

Gazpromneft – Technology Partnerships LLC

Author for correspondence.
Email: yastrebov.pv@gazprom-neft.ru
ORCID iD: 0009-0000-0032-8864
Russian Federation, Saint Petersburg

Artem S. Prodan

Gazpromneft – Technology Partnerships LLC

Email: prodan.as@gazprom-neft.ru
ORCID iD: 0009-0009-4543-3866
Russian Federation, Saint Petersburg

Viktor V. Rodionov

Gazpromneft – Technology Partnerships LLC

Email: rodionov.vvl@gazprom-neft.ru
ORCID iD: 0000-0001-6253-2115
Russian Federation, Saint Petersburg

Alexander S. Ugryumov

Gazpromneft – Technology Partnerships LLC

Email: ugryumov.as@gazprom-neft.ru
ORCID iD: 0009-0005-1109-7148
Russian Federation, Saint Petersburg

References

  1. Morrill JC, Miskimins JL. Optimizing Hydraulic Fracture Spacing in Unconventional Shales. SPE Hydraulic Fracturing Technology Conference. 2012 Feb 6–8; The Woodlands, Texas. Available from: https://onepetro.org/SPEHFTC/proceedings-abstract/12HFTC/All-12HFTC/SPE-152595-MS/157555.
  2. Sneddon N, Elliott, H. The Opening of a Griffith Crack Under Internal Pressure. Quarterly of Applied Mathematics. 1946;4(3):262–267. doi: 10.1093/qjmam/14.3.283.
  3. Eaton B. Fracture gradient prediction and its application in oilfield operations. Journal of Petroleum Technology. 1969;246:1353–1360. doi: 10.2118/2163-PA.
  4. Dinnik A. O davlenii gornykh porod i raschyot krepi krugloy shakhty // Inzhenernyi rabotnik. 1925;7:1–12. (In Russ).
  5. Jaeger J, Cook N. Fundamentals of Rock Mechanics 2nd edn. New York: Capman and Hall; 1979. 475 p.
  6. Zoback M. Reservoir Geomechanics. Cambridge: Cambridge University Press; 2010. 502 p.
  7. Kiryukhin A. Geotermoflyuidodinamika gidrotermal'nykh, vulkanicheskikh i uglevodorodnykh sistem. Saint-Petersburg: Eco-Vector; 2020. 431 p. (In Russ).
  8. Wiprut D, Zoback M. Constraining the full stress tensor for observations of drilling-induced tensile fractures and leak-off tests: Application to borehole stability and sand production on the Norwegian margin. Int. J. Rock Mech. & Min. Sci. 2000;37:317–336. doi: 10.1016/S1365-1609(97)00157-3.
  9. Barton CA, Zoback MD, Burns KL. In situ stress orientation and magnitude at the Fenton Geothermal site, New Mexico, determined from wellbore breakouts. Geophysical Research Letters. 1988;15(5):467–470. doi: 10.1029/GL015i005p00467.
  10. Peška P, Zoback M. Compressive and tensile failure of inclined wellbores and determination of in-situ stress and rock strength. Journal of Geophysical Research. 1995;100(B7):12791–12811. doi: 10.1029/95JB00319.
  11. Arhipov AI, Yastrebov PV. Analiticheskoe resheniye problemy ustoychivosti stvola skvazhiny. Inzhener-neftyanik. 2023;4:59–66. (In Russ).
  12. Zimmer M. Controls on the seismic velocities of unconsolidated sands: Measurements of pressure, porosity and compaction effects. Stanford, CA: Stanford University; 2004. 204 p.
  13. Zoback MD, Kohli AH. Unconventional Reservoir Geomechanics. Cambridge, United Kingdom: Cambridge University Press; 2019.
  14. Aliyev MM, Lutfullin AA, Ismagilova ZF. Neftegazovaya geomekhanika : uchebnoe posobiye. Moscow: Infra-Engineria; 2020. 492 p. (In Russ).
  15. Zhang JJ. Applied Petroleum Geomechanics, Cambridge. MA: Elsevier; 2019. 532 p.
  16. Fjaer E, Holt R, Horsrud P, et al. Petroleum Related Rock Mechanics. Amsterdam: Elsevier; 1992. 514 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Stress polygon

Download (863KB)
3. Figure 2. SHmax range calculation algorithm using fault friction theory

Download (3MB)
4. Figure 3. Influence of UCS and stress anisotropy on breakouts geometry

Download (798KB)
5. Figure 4. Typical graph of a multistage pseudo-triaxial test

Download (356KB)
6. Figure 5. SHmax direction and magnitude alteration in the fault vicinity

Download (1MB)
7. Figure 6. Log view with calculated gradients and fracture density

Download (2MB)

Copyright (c) 2024 Iastrebov P.V., Prodan A.S., Rodionov V.V., Ugryumov A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).