Steam condensate purification by the electromagnetic treatment method
- 作者: Kovrigina T.V.1, Khakimbolatova K.K.1, Chalov T.K.1
-
隶属关系:
- A.B. Bekhturov Institute of Chemical Sciences
- 期: 卷 6, 编号 2 (2024)
- 页面: 109-118
- 栏目: Petrochemistry
- URL: https://journals.rcsi.science/2707-4226/article/view/260119
- DOI: https://doi.org/10.54859/kjogi108717
- ID: 260119
如何引用文章
全文:
详细
Background: This study is aimed at reducing liquid waste in the process of reverse osmotic demineralization of water using an electromagnetic treatment. A side effect of this is the deposition of salts on the reverse osmotic membranes used, which reduces their service life. This leads to a decrease in the performance of the equipment, and, respectively, the membranes used are subjected to further flushing or replacement. The article presents data on long-term tests conducted by Pavlodar Petrochemical Plant LLP on the effectiveness of electromagnetic treatment technology in the process of reverse osmotic purification of water vapor condensate to ensure a minimum volume of concentrate (brine) of no more than 10% and to prevent intensive salt deposition on reverse osmotic membranes.
Aim: Investigate the possibility of using an electromagnetic treatment device to extend the service life of reverse osmotic membranes during steam condensate purification of Pavlodar Petrochemical Plant LLP.
Materials and methods: For this study, "Termite" electronic hardness salt converter was used, which treats water with electromagnetic waves and not only prevents the formation of scale, but also removes the scale already present in the equipment.
Findings: After being treated with an electromagnetic treatment device in the reverse osmosis process, samples of treated water showed a decrease in total salt content to 1.26 mg/kg and iron content from 84 to 10 µg/dm³. At the same time, the water's pH virtually stayed the same. The specific electrical conductivity of steam condensate was found to be 5.0 microns/cm, which corresponds to a value that does not exceed the required standards.
Conclusion: Tests on steam condensate purification carried out by the Pavlodar Petrochemical Plant using pulsed electromagnetic treatment in the reverse osmosis process showed a positive result in reducing the total salt content, in particular iron, as well as water hardness.
作者简介
Tatyana Kovrigina
A.B. Bekhturov Institute of Chemical Sciences
Email: kovriginatat@mail.ru
ORCID iD: 0000-0001-6073-1946
Scopus 作者 ID: 23389403900
Cand. Sc. (Chemistry), professor (associate)
哈萨克斯坦, AlmatyKamilla Khakimbolatova
A.B. Bekhturov Institute of Chemical Sciences
编辑信件的主要联系方式.
Email: ics_kamila@mail.ru
ORCID iD: 0000-0002-4520-5830
Scopus 作者 ID: 23389542200
Cand. Sc. (Chemistry), professor (associate)
哈萨克斯坦, AlmatyTulegen Chalov
A.B. Bekhturov Institute of Chemical Sciences
Email: chalov.45@mail.ru
ORCID iD: 0000-0002-7204-9490
Scopus 作者 ID: 10041096000
D. Sc. (Chemistry), professor
哈萨克斯坦, Almaty参考
- Mehdiyev AJ, Gerasimenko TS, Sarsikeev EZ. results of changes in the parameters of hardnessand pH-factor of tap water in astana after exposure topermanent magnets. Herald of Science of S. Seifullin Kazakh Agro Technical University. 2022;4(115):116–124. doi: 10.51452/kazatu.2022.4.1254.
- Moya SM, Botella NB. Review of Techniques to Reduce and Prevent Carbonate Scale. Prospecting in Water Treatment by Magnetism and Electromagnetism. Water. 2021;13(17). doi: 10.3390/w13172365.
- Jiang W, Xu X, Lin L, et al. A pilot study of an electromagnetic field for control of reverse osmosis membrane fouling and scaling during brackish groundwater desalination. Water. 2019;11(5). doi: 10.3390/w11051015.
- Lin L, Jiang W, Xu X, Xu P. A critical review of the application of electromagnetic fields for scaling control in water systems: mechanisms, characterization, and operation. Clean Water. 2020;3(25):37–44. doi: 10.1038/s41545-020-0071-9.
- Andrianov A, Orlov E. The assessment of magnetic water treatment on formation calcium scale on reverse osmosis membranes. MATEC Web of Conferences. 2018;178. doi: 10.1051/matecconf/201817809001.
- Lazarev SI, Kovalev SV, Shestakov KV. Electrobaromembrane apparatuses: Classification and particular application for wastewater treatment. Acta Periodica Technologica. 2019;50:236–249. doi: 10.2298/APT1950236L.
- Radelyuk I, Tussupova K, Yelubay M, et al. Pitfalls of Wastewater Treatment in Oil Refinery Enterprises in Kazakhstan – A System Approach. Sustainability. 2019;11:1618–1637. doi: 10.3390/su11061618.
- Martynova OI, Kopylov AS, Terebenikhin YF, Ochkov VF. K mekhanizmu vliyaniya magnitnoy obrabotki na protsessy nakipeobrazovaniya i korrozii. Teploenergetika. 1979;6:39–47. (In Russ).
- Ergozhin YY, Chalov TK, Tskhay AA, et al. Elektrodializnaya opresnitel'naya ustanovka s primeneniyem interpolimernykh membran. Voda: khimiya i ekologiya. 2011;7:25–32. (In Russ).
- Vorobyev IV, Kuvshinnikov IM. Fiziko-khimicheskiye i tekhnologicheskiye osnovy glubokoy ochistki prirodnoy vody i promyshlennykh stokov ot primesey nefteproduktov i drugikh organicheskikh soedineniy. Energosberezheniye i vodopodgotovka. 2013;1:2–6. (In Russ).
- Latypov YD, Shavaliyev MF. Ispol'zovaniye membran i membrannykh tekhnologiy dlya biotekhnologicheskikh proizvodstv. Herald of Technological University. 2016;19(8):134–138. (In Russ).
- Ergozhin EE, Chalov TK, Hakimbolatova KH. Membrany i membrannye tehnologii. Almaty: A.B. Bekhturov Institute of Chemical Sciences; 2017. 260 p. (In Russ).
- Patent RK № 23162/ 15.11.10. Byul. № 11. Ergozhin EE, Chalov TK, Kovrigina TV, Hakimbolatova KH, Begenova BE, Izatbekov EU. Sposob polucheniya interpolimernykh membran. (In Russ).
- Mosin OV. Magnitnye apparaty dlya obrabotki vody. Santekhnika, otoplenie, konditsionirovanie. 2011;6(114):24–27. (In Russ).
补充文件
