Steam condensate purification by the electromagnetic treatment method

Cover Page

Cite item

Full Text

Abstract

Background: This study is aimed at reducing liquid waste in the process of reverse osmotic demineralization of water using an electromagnetic treatment. A side effect of this is the deposition of salts on the reverse osmotic membranes used, which reduces their service life. This leads to a decrease in the performance of the equipment, and, respectively, the membranes used are subjected to further flushing or replacement. The article presents data on long-term tests conducted by Pavlodar Petrochemical Plant LLP on the effectiveness of electromagnetic treatment technology in the process of reverse osmotic purification of water vapor condensate to ensure a minimum volume of concentrate (brine) of no more than 10% and to prevent intensive salt deposition on reverse osmotic membranes.

Aim: Investigate the possibility of using an electromagnetic treatment device to extend the service life of reverse osmotic membranes during steam condensate purification of Pavlodar Petrochemical Plant LLP.

Materials and methods: For this study, "Termite" electronic hardness salt converter was used, which treats water with electromagnetic waves and not only prevents the formation of scale, but also removes the scale already present in the equipment.

Findings: After being treated with an electromagnetic treatment device in the reverse osmosis process, samples of treated water showed a decrease in total salt content to 1.26 mg/kg and iron content from 84 to 10 µg/dm³. At the same time, the water's pH virtually stayed the same. The specific electrical conductivity of steam condensate was found to be 5.0 microns/cm, which corresponds to a value that does not exceed the required standards.

Conclusion: Tests on steam condensate purification carried out by the Pavlodar Petrochemical Plant using pulsed electromagnetic treatment in the reverse osmosis process showed a positive result in reducing the total salt content, in particular iron, as well as water hardness.

About the authors

Tatyana V. Kovrigina

A.B. Bekhturov Institute of Chemical Sciences

Email: kovriginatat@mail.ru
ORCID iD: 0000-0001-6073-1946
Scopus Author ID: 23389403900

Cand. Sc. (Chemistry), professor (associate)

Kazakhstan, Almaty

Kamilla K. Khakimbolatova

A.B. Bekhturov Institute of Chemical Sciences

Author for correspondence.
Email: ics_kamila@mail.ru
ORCID iD: 0000-0002-4520-5830
Scopus Author ID: 23389542200

Cand. Sc. (Chemistry), professor (associate)

Kazakhstan, Almaty

Tulegen K. Chalov

A.B. Bekhturov Institute of Chemical Sciences

Email: chalov.45@mail.ru
ORCID iD: 0000-0002-7204-9490
Scopus Author ID: 10041096000

D. Sc. (Chemistry), professor

Kazakhstan, Almaty

References

  1. Mehdiyev AJ, Gerasimenko TS, Sarsikeev EZ. results of changes in the parameters of hardnessand pH-factor of tap water in astana after exposure topermanent magnets. Herald of Science of S. Seifullin Kazakh Agro Technical University. 2022;4(115):116–124. doi: 10.51452/kazatu.2022.4.1254.
  2. Moya SM, Botella NB. Review of Techniques to Reduce and Prevent Carbonate Scale. Prospecting in Water Treatment by Magnetism and Electromagnetism. Water. 2021;13(17). doi: 10.3390/w13172365.
  3. Jiang W, Xu X, Lin L, et al. A pilot study of an electromagnetic field for control of reverse osmosis membrane fouling and scaling during brackish groundwater desalination. Water. 2019;11(5). doi: 10.3390/w11051015.
  4. Lin L, Jiang W, Xu X, Xu P. A critical review of the application of electromagnetic fields for scaling control in water systems: mechanisms, characterization, and operation. Clean Water. 2020;3(25):37–44. doi: 10.1038/s41545-020-0071-9.
  5. Andrianov A, Orlov E. The assessment of magnetic water treatment on formation calcium scale on reverse osmosis membranes. MATEC Web of Conferences. 2018;178. doi: 10.1051/matecconf/201817809001.
  6. Lazarev SI, Kovalev SV, Shestakov KV. Electrobaromembrane apparatuses: Classification and particular application for wastewater treatment. Acta Periodica Technologica. 2019;50:236–249. doi: 10.2298/APT1950236L.
  7. Radelyuk I, Tussupova K, Yelubay M, et al. Pitfalls of Wastewater Treatment in Oil Refinery Enterprises in Kazakhstan – A System Approach. Sustainability. 2019;11:1618–1637. doi: 10.3390/su11061618.
  8. Martynova OI, Kopylov AS, Terebenikhin YF, Ochkov VF. K mekhanizmu vliyaniya magnitnoy obrabotki na protsessy nakipeobrazovaniya i korrozii. Teploenergetika. 1979;6:39–47. (In Russ).
  9. Ergozhin YY, Chalov TK, Tskhay AA, et al. Elektrodializnaya opresnitel'naya ustanovka s primeneniyem interpolimernykh membran. Voda: khimiya i ekologiya. 2011;7:25–32. (In Russ).
  10. Vorobyev IV, Kuvshinnikov IM. Fiziko-khimicheskiye i tekhnologicheskiye osnovy glubokoy ochistki prirodnoy vody i promyshlennykh stokov ot primesey nefteproduktov i drugikh organicheskikh soedineniy. Energosberezheniye i vodopodgotovka. 2013;1:2–6. (In Russ).
  11. Latypov YD, Shavaliyev MF. Ispol'zovaniye membran i membrannykh tekhnologiy dlya biotekhnologicheskikh proizvodstv. Herald of Technological University. 2016;19(8):134–138. (In Russ).
  12. Ergozhin EE, Chalov TK, Hakimbolatova KH. Membrany i membrannye tehnologii. Almaty: A.B. Bekhturov Institute of Chemical Sciences; 2017. 260 p. (In Russ).
  13. Patent RK № 23162/ 15.11.10. Byul. № 11. Ergozhin EE, Chalov TK, Kovrigina TV, Hakimbolatova KH, Begenova BE, Izatbekov EU. Sposob polucheniya interpolimernykh membran. (In Russ).
  14. Mosin OV. Magnitnye apparaty dlya obrabotki vody. Santekhnika, otoplenie, konditsionirovanie. 2011;6(114):24–27. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Electronic converter of hardness salts

Download (158KB)
3. Figure 2. Process flow diagram of a pilot plant with a capacity of 300 l/h

Download (300KB)
4. Figure 3. General view of the pilot plant

Download (142KB)
5. Figure 4. General view of the unit installed at the Pavlodar Petrochemical Plant

Download (130KB)
6. Figure 5. Cartridge type filter before test

Download (126KB)
7. Figure 6. Cartridge type filter before test

Download (68KB)
8. Figure 7. Photos of the removed membrane elements after tests

Download (139KB)
9. Figure 8. Photo of the filter element after completion of long-term tests

Download (153KB)

Copyright (c) 2024 Kovrigina T.V., Khakimbolatova K.K., Chalov T.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).