Optimizing pipeline integrity management through customized risk modeling: a case study in Kazakhstan

封面

如何引用文章

全文:

详细

Background: Nowadays industry best practices demonstrate that routine evaluation of pipeline risk enables more efficient resource allocation, particularly by focusing efforts on critical areas. Consequently, process of analyzing the risks associated with operating different facilities in petroleum industry should be considered a fundamental prerequisite for decision-making, especially while managing pipeline network’s integrity. In the Republic of Kazakhstan, the current decision-making framework is founded upon the "technical condition" management model, which differs significantly from the risk-based approach prevalent in the international oil and gas industry. Moreover, as a result of the absence of the comprehensive failure statistics in the petroleum industry of the Republic of Kazakhstan, it makes it even more complicated to implement proper quantitative risk assessment.

Aim: This article aims to demonstrate how customized risk model can be developed to reflect specific conditions and challenges related with the working environment, dangers and threats, as well as data’s quality and availability in Kazakhstan.

Materials and methods: QPRAM (quantitative pipeline risk assessment model), industrial data for the given pipeline X.

Results: The model illustrates fundamental and most important risk factors at high-resolution intervals along the pipeline’s network and was calibrated using real data from the industry to ensure that the resulting risk profiles are reflective of the possible threats and existing operating experience in the given region.

Conclusion: Through the adoption of QPRAM's guiding concepts and methods, all parties in industry may strengthen operational resilience and safety standards against potential threats, protecting the long-term stability and dependability of critical infrastructure networks.

作者简介

Diana Adilova

JSC Kazakh-British Technical University

编辑信件的主要联系方式.
Email: d_adilova@kbtu.kz
ORCID iD: 0009-0005-9703-9087
哈萨克斯坦, Almaty

Abdugaffor Mirzoev

ROSEN Europe B.V.

Email: gmirzoev@rosen-group.com
哈萨克斯坦, Almaty

参考

  1. The American Society of Mechanical Engineers. Managing system integrity of gas pipelines, B31.8S-2022. New York: ASME; 2022. 80 p.
  2. American Petroleum Institute. Managing System Integrity for Hazardous Liquid Pipelines. Washington D.C.: API; 2019.
  3. Rezul'taty vnedreniya i perspektivy razvitiya sistemy upravleniya celostnost'yu MT KKT, KKT. Almaty: 2018. Available from: https://kcp.kz/corporate/ekspluataciya. (In Russ).
  4. safety.ru [Internet]. Promyshlennaya bezopasnost'. Reestr avarij na promyshlennyh ob"ektah [cited 11.11.2023]. Available from: https://safety.ru/accidents/#/. (In Russ).
  5. PECB. ISO 31000 Risk Management – Principles and Guidelines. Professional Evaluation and Certification Board. Montreal, Quebec: PECB; 2015.
  6. IGEM. IGEM/TD/2 Edition 2, Transmission and Distribution (TD) – Assessing the risks from high pressure natural gas pipelines. Derbyshire: IGEM; 2015.
  7. DNV. DNV RP F116, Integrity Management of submarine pipeline systems. Høvik, Norway: DNV; 2021.
  8. Philip NS, Balmer D. Risk Based Pipeline Integrity Management System – A Case Study. Berlin: OnePetro; 2016.
  9. Stephens MJ. A Model for Sizing High Consequence Areas associated with Natural Gas Pipelines. C-FER Technologies; Oct 2000. Topical report. Report No.: 99068. Contract No. 8174.

补充文件

附件文件
动作
1. JATS XML
2. Table 5. Distribution of the risk index R along the pipeline

下载 (67KB)
3. Figure 1. QPRAM Workflow – Schematic

下载 (184KB)
4. Figure 2. Probability distribution of failure due to external corrosion (EC)

下载 (335KB)
5. Figure 3. Probability distribution of failure due to third party damage (TPD)

下载 (291KB)
6. Figure 4. Distribution of socio-economic impact by number of segments (PPLE)

下载 (175KB)
7. Figure 5. Average CoF values

下载 (249KB)
8. Figure 6. Distribution of the risk index R along the pipeline

下载 (332KB)

版权所有 © Adilova D., Mirzoev A., 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).