Automatic selection of sites for drilling candidate injection wells

封面

如何引用文章

全文:

详细

Background: The increasing difficulty in finding sites for drilling injection wells at the later stages of field development by NC “KazMunayGas” JSC, due to infill drilling of the grid of existing wells and uneven reserve production, is a pressing problem today. Developments in geospatial analysis and artificial intelligence have stimulated the search for new approaches to solve this problem.

Aim: The research is aimed at developing an innovative approach to automatically identifying the most promising sites for drilling injection wells, based on comprehensive analysis of large volumes of data using advanced algorithms.

Materials and methods: The work uses methods for collecting and analyzing production and geological data, uses spatial algorithms for multivariate analysis and data normalization methods, including the adjusted interquartile range to determine outliers.

Results: Results are described showing the ranking of cells by drilling potential based on comprehensive analysis, as well as the assignment of unique codes to each cell to improve decision-making accuracy.

Conclusion: Directions for further research are noted, including analysis of data inaccuracies, consideration of additional parameters, identification of effective interlayers, application of machine learning methods, and expansion of testing of the approach in other fields.

作者简介

Aidana Beken

KMG Engineering

编辑信件的主要联系方式.
Email: a.beken@kmge.kz
哈萨克斯坦, Astana

Aktan Ibrayev

KMG Engineering

Email: ak.ibrayev@kmge.kz
哈萨克斯坦, Astana

Zhassulan Zhetruov

KMG Engineering

Email: zh.zhetruov@kmge.kz
ORCID iD: 0000-0003-3639-4390
哈萨克斯坦, Astana

Azamat Yelemessov

KMG Engineering

Email: ayelemessov@kmge.kz
哈萨克斯坦, Astana

Assel Zholdybayeva

KMG Engineering

Email: a.zholdybayeva@kmge.kz
ORCID iD: 0000-0002-1015-0593
哈萨克斯坦, Astana

参考

  1. Wei B. Well Production Prediction and Visualization Using Data Mining and Web GIS [master's thesis]. Calgary: University of Calgary; 2016. doi: 10.11575/PRISM/28686.
  2. Xu X, Shao Y, Fu J, et al. The Application of GIS in The Digital Oilfield Construction. 2nd International Conference on Computer Science and Electronics Engineering; March 2013. Available from: https://www.atlantis-press.com/proceedings/iccsee-13/4443.
  3. Khan H, Srivastav A, Kumar Mishra A, Anh Tran T. Machine learning methods for estimating permeability of a reservoir. Int J Syst Assur Eng Manag. 2022;13:2118–2131. doi: 10.1007/s13198-022- 01655-9.
  4. Ruizhi Z, Cyrus S, Ray J. Machine learning for drilling applications: A review. Journal of Natural Gas Science and Engineering. 2022;108. doi: 10.1016/j.jngse.2022.104807.
  5. Ramzey H, Badawy M, Elhosseini M, A. Elbaset A. I2OT-EC: A Framework for Smart Real-Time Monitoring and Controlling Crude Oil Production Exploiting IIOT and Edge Computing. Energies. 2023;16(4). doi: 10.3390/en16042023.
  6. Schiozer DJ, Souza dos Santos AA, Graça Santos SM, Von Hohendorff Filho JC. Model-based decision analysis applied to petroleum field development and management. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles. 2019;74. doi: 10.2516/ogst/2019019.
  7. Hubert M., Vandervieren E. An adjusted boxplot for skewed distributions. Computational Statistics & Data Analysis. 2008;52(12):5186–5201. doi: 10.1016/j.csda.2007.11.008.

补充文件

附件文件
动作
1. JATS XML
2. Figure 1. Calculation of the operating criterion for wells with low bottomhole pressure

下载 (118KB)
3. Figure 2. Calculation of production indicators for 3 months for the existing well stock

下载 (22KB)
4. Figure 3. Map of surface infrastructure and cells with potential drilling sites

下载 (506KB)
5. Figure 4. Determination of wells of the first radius of the surrounding

下载 (116KB)
6. Figure 5. Cell parameters

下载 (455KB)
7. Figure 6. Distribution with confidence interval limits of two methods

下载 (250KB)
8. Figure 7. Compensation distribution

下载 (123KB)
9. Figure 8. 50 most suitable sectors by well spacing point

下载 (237KB)
10. Figure 9. 20 most suitable sectors by well spacing point

下载 (40KB)
11. Figure 10. Sectors on the X horizon

下载 (381KB)

版权所有 © Beken A.A., Ibrayev A.Y., Zhetruov Z.T., Yelemessov A.S., Zholdybayeva A.T., 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).