Application of microfluidics to optimize oil and gas field development technologies
- Authors: Pereponov D.1,2, Scerbacova A.1,2, Kazaku V.1, Hajiyev M.1, Tarkhov M.A.3, Shilov E.1,2, Cheremisin A.1,2
-
Affiliations:
- Skolkovo Institute of Science and Technology
- LABADVANCE
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
- Issue: Vol 5, No 1 (2023)
- Pages: 57-73
- Section: Oil and gas field development and exploitation
- URL: https://journals.rcsi.science/2707-4226/article/view/134366
- DOI: https://doi.org/10.54859/kjogi108639
- ID: 134366
Cite item
Full Text
Abstract
To increase the oil recovery factor (RF), enhanced oil recovery (EOR) methods are applied: chemical, gas, thermal, and combined ones. Standard laboratory research methods for selecting and optimizing EOR technologies require a lot of time and resources, as well as core material, which is often in short supply. To optimize the selection of reagents and field development technologies, the use of microfluidic technology is proposed i.e. conducting experiments in reservoir conditions using microfluidic chips with a porous structure, reproducing the properties of the core of the target field. The main advantages of conducting tests in micromodels are the low duration and the ability to visualize filtration processes, which makes it possible to evaluate the behavior of fluids in reservoir conditions.
This paper considers the modern application of microfluidics for the selection of EOR agents and stimulation methods and the status of this technology in the oil and gas industry. The use of microfluidic chips for screening surfactants and polymers, as well as studying the mechanism of low-mineralized water action is described. Conducting microfluidic tests to optimize gas and thermal EOR, which became possible due to the development and improvement of technology, is considered.
Full Text
##article.viewOnOriginalSite##About the authors
Dmitrii Pereponov
Skolkovo Institute of Science and Technology; LABADVANCE
Email: dmitrii.pereponov@skoltech.ru
Russian Federation, Moscow; Moscow
Alexandra Scerbacova
Skolkovo Institute of Science and Technology; LABADVANCE
Email: a.scerbacova@skoltech.ru
Russian Federation, Moscow; Moscow
Vitaly Kazaku
Skolkovo Institute of Science and Technology
Email: vitaly.kazaku@skoltech.ru
Russian Federation, Moscow
Murad Hajiyev
Skolkovo Institute of Science and Technology
Email: murad.hajiyev@skoltech.ru
Russian Federation, Moscow
Michael A. Tarkhov
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Email: tmafuz@mail.ru
Russian Federation, Moscow
Evgeny Shilov
Skolkovo Institute of Science and Technology; LABADVANCE
Author for correspondence.
Email: shilov@labadvance.net
ORCID iD: 0000-0001-9704-2298
Scopus Author ID: 57202316742
Russian Federation, Moscow; Moscow
Alexey Cheremisin
Skolkovo Institute of Science and Technology; LABADVANCE
Email: a.cheremisin@skoltech.ru
Scopus Author ID: 57193064808
Russian Federation, Moscow; Moscow
References
- Sheng JJ. Status of surfactant EOR technology. Petroleum. 2015;1(2):97–105. doi: 10.1016/j.petlm.2015.07.003.
- Muggeridge A, Cockin A, Webb K, et al. Recovery rates , enhanced oil recovery and technological limits. Philos Trans A Math Phys Eng Sci. Published online 2014. doi: 10.1098/rsta.2012.0320.
- Lake LW. Enhanced Oil Recovery. New York: Prentice Hall, Englewood Cliffs; 1989.
- Kang P-S, Lim J-S, Huh C. Screening Criteria and Considerations of Offshore Enhanced Oil Recovery. Energies. 2016;9(1):1–18. doi: 10.3390/en9010044.
- Pwaga S, Iluore C, Idrees MU, et al. Comparative Study of Different EOR Methods. Trondheim: NTNU; 2010.
- Fani M, Pourafshary P, Mostaghimi P, Mosavat N. Application of microfluidics in chemical enhanced oil recovery: A review. Fuel. 2022;315:123225. doi: 10.1016/j.fuel.2022.123225.
- Xu ZX, Li SY, Li BF, et al. A review of development methods and EOR technologies for carbonate reservoirs. Pet Sci. 2020;17(4):990–1013. doi: 10.1007/s12182-020-00467-5.
- Askarova A, Turakhanov A, Markovic S, Popov E. Thermal enhanced oil recovery in deep heavy oil carbonates: Experimental and numerical study on a hot water injection performance. J Pet Sci Eng. 2020;194:107456. doi: 10.1016/j.petrol.2020.107456.
- Gbadamosi AO, Kiwalabye J, Junin R, Augustine A. A review of gas enhanced oil recovery schemes used in the North Sea. J Pet Explor Prod Technol. 2018;8(4):1373–1387. doi: 10.1007/s13202-018-0451-6.
- Alvarado V, Manrique E. Enhanced oil recovery: An update review. Energies. 2010;3(9):1529–1575. doi: 10.3390/en3091529.
- Gbadamosi AO, Junin R, Manan MA, Agi A, Yusuff AS. An Overview of Chemical Enhanced Oil Recovery: Recent Advances and Prospects. Berlin Heidelberg: Springer; 2019. doi: 10.1007/s40089-019-0272-8.
- Olajire AA. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy. 2014;77:963–982. doi: 10.1016/j.energy.2014.09.005.
- Kamal MS, Sultan AS, Al-mubaiyedh UA, Hussein IA. Review on Polymer Flooding : Rheology, Adsorption, Stability, and Field Applications of Various Polymer Systems. Polymer Reviews. 2015;55(3):491–530. doi: 10.1080/15583724.2014.982821.
- Li X, Zhang F, Liu G. Review on polymer flooding technology. IOP Conf. Series: Earth and Environmental Science; 2021 Oct 10–14; Orlando, Fl. doi: 10.1088/1755-1315/675/1/012199. Available from: https://www.researchgate.net/journal/IOP-Conference-Series-Earth-and-Environmental-Science-1755-1315https://www.researchgate.net/publication/349886677_Review_on_polymer_flooding_technology.
- Hirasaki GJ, Miller CA, Puerto M. Recent advances in surfactant EOR. SPE J. 2011;16(4):889–907. doi: 10.2118/115386-PA.
- Pal S, Mushtaq M, Banat F, Al Sumaiti AM. Review of surfactant-assisted chemical enhanced oil recovery for carbonate reservoirs: challenges and future perspectives. Pet Sci. 2018;15(1):77–102. doi: 10.1007/s12182-017-0198-6.
- Sagir M, Mushtaq M, Tahir MS, Tahir MB, Shaik AR. Surfactants for Enhanced Oil Recovery Applications.; 2020. doi: 10.1007/978-3-030-18785-9.
- Lifton VA. Microfluidics: An enabling screening technology for enhanced oil recovery (EOR). Lab Chip. 2016;16(10):1777–1796. doi: 10.1039/c6lc00318d.
- Gogoi S, Borgohain S. Review on microfluidic studies for EOR application. J Pet Explor Prod Technol. 2019;9(3):2263–2277. doi: 10.1007/s13202-019-0610-4.
- Karadimitriou NK, Hassanizadeh SM. A Review of Micromodels and Their Use in Two-Phase Flow Studies. Vadose Zo J. 2012;11(3):vzj2011.0072. doi: 10.2136/vzj2011.0072.
- Mattax C, Kyte J. Ever see a water flood? Oil Gas J. 1961;59:115–128.
- Davis JA, Jones SC. Displacement Mechanisms of Micellar Solutions. J Pet Technol. 1968;20(12):1415–1428. doi: 10.2118/1847-2-pa.
- Rodriguez A, Castro D, Oostrom M, Shokri N. Effects of shear-thinning fluids on residual oil formation in microfluidic pore networks. J Colloid Interface Sci. 2016;472:34–43. doi: 10.1016/j.jcis.2016.03.027.
- Wegner J, Hincapie RE, Födisch H, Ganzer L. Novel Visualisation of Chemical EOR Flooding Using a Lab-on-a-Chip Setup Supported by an Extensive Rheological Characterisation; 2015 Aug 11–13; Kuala Lumpur, Malaysia. Paper Number: SPE-174648-MS.
- Lacey M, Hollis C, Oostrom M, Shokri N. Effects of Pore and Grain Size on Water and Polymer Flooding in Micromodels. Energy and Fuels. 2017;31(9):9026–9034. doi: 10.1021/acs.energyfuels.7b01254.
- Buchgraber M, Clemens T, Castanier LM, Kovscek AR. A Microvisual Study of the Displacement of Viscous Oil by Polymer Solutions. SPE Reserv Eval Eng. 2011;14(03):269–280.
- Aktas F, Clemens T, Castanier LM, Kovscek AR. Viscous oil displacement with aqueous associative polymers. Proc – SPE Symp Improv Oil Recover. 2008;1:384–394.
- Santamaria O, Lopera SH, Riazi M, Minale M, Cort FB, Franco CA. Phenomenological study of the micro- and macroscopic mechanisms during polymer flooding with SiO 2 nanoparticles. J Pet Sci Eng. 2021;198. doi: 10.1016/j.petrol.2020.108135.
- Rueda E, Akarri S, Torsæter O. Experimental Investigation of the E ff ect of Adding Nanoparticles to Polymer Flooding in Water-Wet Micromodels. Nanomaterials. 2020.
- Qi ZB, Pierobon S, Serediak O, Le J, Pettigrew A, Abedini A. Effects of thief zones on displacement efficiency: Microfluidic pore-scale and conformance control analysis. Fuel. 2022;316:123371. doi: 10.1016/j.fuel.2022.123371.
- De S, Krishnan P, Schaaf J Van Der, et al. Viscoelastic effects on residual oil distribution in flows through pillared microchannels. 2018;510:262–271. doi: 10.1016/j.jcis.2017.09.069.
- Druetta P, Picchioni F. Influence of physical and rheological properties of sweeping fluids on the residual oil saturation at the micro- and macroscale. J Nonnewton Fluid Mech. 2020;286:104444. doi: 10.1016/j.jnnfm.2020.104444.
- Kim J, Willmott E, Quintero L. Microfluidics Technology for Visualizing Surfactant Performance in Enhanced Oil Recovery. IOR 2019 – 20th European Symposium on Improved Oil Recovery; 2019 Apr 08; Pau, France. doi: 10.3997/2214-4609.201900088.
- Brady PV, Thyne G. Functional Wettability in Carbonate Reservoirs. Energy & Fuels. 2016;30:9217–9225. doi: 10.1021/acs.energyfuels.6b01895.
- Buckley JS, Liu Y, Monsterleet S, Recovery P. Mechanisms of Wetting Alteration by Crude Oils. SPE J. 1998;3(01):54–61. doi:https://doi.org/10.2118/37230-PA.
- Xu L, Han M, Cao D, Wang J. Study on dynamic interfacial tension behaviors in surfactant selection for improving oil production. J Pet Sci Eng. 2022;209:109978. doi: 10.1016/j.petrol.2021.109978.
- Wegner J, Ganzer L. Rock-on-a-Chip Devices for High p, T Conditions and Wettability Control for the Screening of EOR Chemicals. SPE Europec featured at 79th EAGE Conference and Exhibition; 2017 June 12–15; Paris, France. Paper Number: SPE-185820-MS.
- Yun W, Chang S, Cogswell DA, et al. Toward Reservoir-on-a-Chip: Rapid Performance Evaluation of Enhanced Oil Recovery Surfactants for Carbonate Reservoirs Using a Calcite-Coated Micromodel. Sci Rep. 2020;10(1):1–13. doi: 10.1038/s41598-020-57485-x.
- Wang W, Chang S, Gizzatov A. Toward Reservoir-on-a-Chip: Fabricating Reservoir Micromodels by in Situ Growing Calcium Carbonate Nanocrystals in Microfluidic Channels. ACS Appl Mater Interfaces. 2017;9(34):29380–29386. doi: 10.1021/acsami.7b10746.
- Vavra E, Puerto M, Biswal SL, Hirasaki GJ. A systematic approach to alkaline – surfactant – foam flooding of heavy oil : microfluidic assessment with a novel phase – behavior viscosity map. Sci Rep. 2020;10:1–12. doi: 10.1038/s41598-020-69511-z.
- Zhao X, Feng Y, Liao G, Liu W. Visualizing in-situ emulsification in porous media during surfactant flooding: A microfluidic study. J Colloid Interface Sci. 2020;578:629–640. doi: 10.1016/j.jcis.2020.06.019.
- Zhao X, Zhan F, Liao G, et al. In situ micro-emulsification during surfactant enhanced oil recovery : A microfluidic study. J Colloid Interface Sci. 2022;620:465–477. doi: 10.1016/j.jcis.2022.04.045.
- Jadhunandan PP, Morrow NR. Effect of Wettability on Waterflood Recovery for Crude-Oil/Brine/Rock Systems. Spe Reserv Eng. 1995;10(01):40–46. doi:https://doi.org/10.2118/22597-PA.
- Song W, Kovscek AR. Lab on a Chip for investigation of low salinity oil-recovery processes. Lab Chip. 2015;16:3314–3325. doi: 10.1039/c5lc00544b.
- Amirian T, Haghighi M, Mostaghimi P. Pore Scale Visualization of Low Salinity Water Flooding as an Enhanced Oil Recovery Method. Energy & Fuels. 2017;31(12):13133–13143. doi: 10.1021/acs.energyfuels.7b01702.
- Tetteh JT, Cudjoe SE, Aryana SA, Barati R. Investigation into fluid-fluid interaction phenomena during low salinity waterflooding using a reservoir-on-a-chip microfluidic model. J Pet Sci Eng. 2021;196:108074. doi: 10.1016/j.petrol.2020.108074.
- Al-khafaji A, Wilson M, Neville A, Wen D. Pore-Scale Displacement Efficiency during Different Salinity Water Flooding in Hydrophilic and Hydrophobic Microstructures. Energy & Fuels. 2019;33(5):3859–3870. doi: 10.1021/acs.energyfuels.8b04295.
- Golmohammadi M, Mohammadi S, Mahani H, Ayatollahi S. The non-linear effect of oil polarity on the efficiency of low salinity waterflooding : A pore-level investigation. J Mol Liq. 2022;346:117069. doi: 10.1016/j.molliq.2021.117069.
- Le-anh D, Rao A, Stetten AZ, et al. Oil Displacement in Calcite-Coated Microfluidic Chips via Waterflooding at Elevated Temperatures and Long Times. Micromachines. 2022;13(8):1316. doi: 10.3390/mi13081316.
- Shaik IK, Aichele CP, Bikkina PK. Microfluidics-Based Low Salinity Wettability Alteration Study of Naphthenic-Acid-Adsorbed Calcite Surfaces. Energy and Fuels. 2022;36(4):1842–1853. doi: 10.1021/acs.energyfuels.1c03837.
- Gauteplass J, Folleso HN, Graue A, Kovscek AR, Ferno MA. Visualization of Pore-level Displacement Mechanisms During CO2 Injection and EOR Processes. IOR 2013 – 17th European Symposium on Improved Oil Recovery; 2013 Apr 16–18; Saint Petersburg, Russia. doi:https://doi.org/10.3997/2214-4609.20142617.
- Zhong J, Abedini A, Xu L, Xu Y, Qi Z, Sinton D. Nanomodel visualization of fluid injections in tight formations. Nanoscale. 2018;10:21994–22002. doi: 10.1039/c8nr06937a.
- W. de Haas T, Fadaei H, Guerrero U, Sinton D. Steam-on-a-chip for oil recovery: the role of alkaline additives in steam assisted gravity drainage. Lab on a Chip. 2013;13(19):3832–3839. doi: 10.1039/c3lc50612f.
- Syed AH, Mosavat N, Riordon J, et al. A combined method for pore-scale optical and thermal characterization of SAGD. J Pet Sci Eng. 2016;146:866–873. doi: 10.1016/j.petrol.2016.07.030.
- Xu L, Abedini A, Qi ZB, Kim M, Guerrero A, Sinton D. Pore-scale analysis of steam-solvent coinjection: azeotropic temperature, dilution and asphaltene deposition. Fuel. 2018;220:151–158. doi: 10.1016/j.fuel.2018.01.119.
- Haas TW De, Bao B, Ramirez HA, Abedini A, Sinton D. Screening High-Temperature Foams with Micro fl uidics for Thermal Recovery Processes. Energy & Fuels. 2021;35(9):7866–7873. doi: 10.1021/acs.energyfuels.1c00332.
- Hyman JD, Viswanathan HS, Carey JW, et al. Understanding hydraulic fracturing: a multi-scale problem. Phil.Trans.R.Soc.A. 2016;374. doi: 10.1098/rsta.2015.0426.
- Hasham AA, Abedini A, Jatukaran A, Persad A, Sinton D. Visualization of fracturing fluid dynamics in a nanofluidic chip. J Pet Sci Eng. 2018;165:181–186. doi: 10.1016/j.petrol.2018.02.017.
- Ren G, Abedini A, Yang H, Sanders A. Visualization of Flowback Aid Mechanisms Utilizing a Microfluidic Pore-Scale Device. SPE International Conference and Exhibition on Formation Damage Control; 2020 Feb 19–21; Lafayette, Louisiana, USA. Paper Number: SPE-199269-MS.
- Cheremisin A, Shilov E, Isupov A. High-Pressure and High-Temperature Holder for Microfluidic Chip. United States patent US 2764734. 2022.
Supplementary files
