Transition to the use of digital assistants in the kinematic interpretation of the data of seismic exploration by the example of the problem of improving the quality of seismic data after summation and reliability of the tectonic model forecast


如何引用文章

全文:

详细

Modern seismic exploration still faces the challenges of automating processes and increasing the reliability of work results, especially in regions with complex geological conditions. An important place in the cycle of seismic surveys is occupied by the stage of kinematic interpretation, the main purpose of which is a detailed understanding of the structural features of the geological section and obtaining a reasonable geological model of a particular region of study. The cost of an error at this stage of the work is quite high, but the interpretation processes require significant labor costs, and the results often contain errors. Standard algorithms and methodological approaches do not fully provide solutions to the full range of tasks, which necessitates the search for new approaches to the interpretation of seismic data. In recent years, there has been increasing interest in attracting the capabilities of artificial intelligence to solve production problems. New approaches to solving the problems of the stage of kinematic interpretation of seismic data based on the use of artificial intelligence through machine learning and deep neural networks are proposed: – technology of elimination of irregular noises of the total seismic data to improve the quality of the initial seismic material and simplify the stage of structural interpretation; – technology of probabilistic forecast of disturbance systems and obtaining a detailed tectonic model. Theoretical foundations are presented and the results of applying technologies on a series of real production projects are demonstrated, which confirm the advantages of using neural networks in interpretation to eliminate subjectivity and significantly reduce time costs at the stage of structural constructions in various geological conditions.

全文:

受限制的访问

作者简介

Pavel Avdeev

GridPoint Dynamics LLC

Email: p.avdeev@geoplat.com
ведущий геофизик Moscow

Andrey Bazanov

GridPoint Dynamics LLC

Email: a.bazanov@geoplat.com
директор департамента развития бизнеса Moscow

Igor Efremov

GridPoint Dynamics LLC

Email: i.efremov@geoplat.com
генеральный директор Moscow

Ruslan Miftakhov

GridPoint Dynamics LLC

Email: r.miftakhov@geoplat.com
технический директор Moscow

参考

  1. Xing Zhao, Ping Lu, Yanyan Zhang, Jianxiong Chen, and Xiaoyang Li. Swell-noise attenuation: A deep learning approach. – The Leading Edge, 2019, v. 38, № 12, р. 934-943.
  2. Xiong W., Ji X., Ma Y., Wang Y., AlBenHassan N.M., Ali M.N., and Luo Y. Seismic fault detection with convolutional neural network. – Geophysics, 2018, v. 83, №. 5, р. O97–O103.
  3. Wu X., Shi Y., Fomel S., Liang L., Zhang Q., and Yusifov A. FaultNet3D: Predicting fault probabilities, strikes and dips with a common CNN. – IEEE Transactions on Geoscience and Remote Sensing, 2019.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Avdeev P.A., Bazanov A.K., Efremov I.I., Miftakhov R.F., 2022

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».