The Raman Shift Wavenumber Measure and the Possibilities of its Application for Quantitative Analysis

Cover Page

Cite item

Full Text

Abstract

Raman spectroscopy is mainly used for qualitative analysis, since the intensity of Raman lines is instrument dependent. At the same time, the high selectivity of Raman spectra stimulates interest in finding ways to use them for quantitative analysis as well, and the development of methods to effectively apply Raman spectroscopy for quantitative analysis is quite relevant.The aim of the study was to investigate the possibilities of using the measure developed at the All-Russian Scientific Research Institute for Optical and Physical Measurements and designed for calibration of Raman instruments on the Raman shift wavenumber scale for quantitative analysis from Raman spectra.The developed measure (registration number in the Federal Information Fund for Ensuring Uniformity of Measurements 93847-24) is a polymer film made of polystyrene with sulfur addition and allows storing and transmitting a unit of Raman shift wavenumber for Raman scattering excitation wavelengths of 532, 633 and 785 nm.The possibility of using this measure for quantitative analysis of substances by measuring the intensity of Raman lines in instrument-independent units is considered. It was found that the use of the measure allows to determine the volume fraction of individual substances (ethanol) with relative random error less than 3 % and relative systematic error less than 6 %. To analyze multicomponent mixtures (alcohols, sugars) with the help of the measure, a multivariate calibration was constructed using the Partial Least Squares method. In this case, the volume fraction of components in an unknown sample was determined with a relative error not exceeding 15 %.The practical significance of the obtained study results allows to calibrate Raman microscopes and spectrometers on the Raman shift wavenumber scale, as well as to carry out quantitative analysis of individual substances and multicomponent systems using Raman spectroscopy.

About the authors

Anna A. Yushina

All-Russian Research Institute for Optical and Physical Measurements

Email: yushina@vniiofi.ru

Mikhail K. Alenichev

All-Russian Research Institute for Optical and Physical Measurements

Email: alenichev@vniiofi.ru
ORCID iD: 0000-0001-6336-8900

Aram V. Saakian

All-Russian Research Institute for Optical and Physical Measurements

Email: saakian.av@phystech.edu
ORCID iD: 0000-0002-4012-4935

Alexander D. Levin

All-Russian Research Institute for Optical and Physical Measurements

Email: levin-ad@vniiofi.ru
ORCID iD: 0000-0001-9087-952X

References

  1. Benattia F. K., Arrar Z., Dergal F. Methods and applications of Raman spectroscopy: a powerful technique in modern research, diagnosis, and food quality control // Current Nutrition & Food Science. 2024. Vol. 20, № 1. P. 41–61. https://doi.org/10.2174/1573401319666230503150005
  2. Xiao L., Feng S., Lu X. Raman spectroscopy: Principles and recent applications in food safety // Advances in Food and Nutrition Research. 2023. Vol. 106. P. 1–29. https://doi.org/10.1016/bs.afnr.2023.03.007
  3. Khristoforova Y., Bratchenko L., Bratchenko I. Raman-based techniques in medical applications for diagnostic tasks: a review // International Journal of Molecular Sciences. 2023. Vol. 24, № 21. P. 15605. https://doi.org/10.3390/ijms242115605
  4. Raman spectroscopy for viral diagnostics / J. Lukose// Biophysical Reviews. 2023. Vol. 15, № 2. P. 199–221. https://doi.org/10.1007/s12551-023-01059-4
  5. Recent advancements and applications of Raman spectroscopy in pharmaceutical analysis / K. C. Shah// Journal of Molecular Structure. 2023. Vol. 1278. P. 134914. https://doi.org/10.1016/j.molstruc.2023.134914
  6. Ott C. E., Arroyo L. E. Transitioning surface-enhanced Raman spectroscopy (SERS) into the forensic drug chemistry and toxicology laboratory: Current and future perspectives // Wiley Interdisciplinary Reviews: Forensic Science. 2023. Vol. 5, № 4. P. e1483. https://doi.org/10.1002/wfs2.1483
  7. Chauhan S., Sharma S. Applications of Raman spectroscopy in the analysis of biological evidence // Forensic Science, Medicine and Pathology. 2024. Vol. 20, № 3. P. 1066–1090. https://doi.org/10.1007/s12024–023–00660-z
  8. Recent progresses in machine learning assisted Raman spectroscopy / Y. Qi// Advanced Optical Materials. 2023. Vol. 11, № 14. P. 2203104. https://doi.org/10.1002/adom.202203104
  9. Berghian-Grosan C., Magdas D. A. Application of Raman spectroscopy and Machine Learning algorithms for fruit distillates discrimination // Scientific reports. 2020. Vol. 10, № 1. P. 21152. https://doi.org/10.1038/s41598-020-78159-8
  10. Using Raman spectroscopy as a fast tool to classify and analyze Bulgarian wines-A feasibility study / V. Deneva// Molecules. 2019. Vol. 25, № 1. P. 170. https://doi.org/10.3390/molecules25010170
  11. Learning algorithms for identification of whisky using portable Raman spectroscopy / K. J. Lee// Current Research in Food Science. 2024. Vol. 8. P. 100729. https://doi.org/10.1016/j.crfs.2024.100729
  12. Black Carbon characterization with Raman spectroscopy and machine learning techniques: first results for urban and rural area / L. Drudi// Global NEST International Conference on Environmental Science & Technology: Collection of works 18th International Conference on Environmental Science and Technology CEST 2023, Athens, Greece, 30 August to 2 September 2023. https://doi.org/10.30955/gnc2023.00088
  13. Machine-learning models for Raman spectra analysis of twisted bilayer graphene / N. Sheremetyeva// Carbon. 2020. Vol. 169. P. 455–464. https://doi.org/10.1016/j.carbon.2020.06.077
  14. Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey / S. Hu// Scientific reports. 2022. Vol. 12, № 1. P. 3456. https://doi.org/10.1038/s41598-022-07222-3
  15. Machine learning assisted Raman spectroscopy: A viable approach for the detection of microplastics / M. Sunil// Journal of Water Process Engineering. 2024. Vol. 60. P. 105150. https://doi.org/10.1016/j.jwpe.2024.105150
  16. Machine learning-assisted raman spectroscopy and SERS for bacterial pathogen detection: clinical, food safety, and environmental applications / M. H. U. Rahman// Chemosensors. 2024. Vol. 12, № 7. P. 140. https://doi.org/10.3390/chemosensors12070140
  17. Qi Y., Liu Y., Luo J. Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artificial intelligence fusion // PhotoniX. 2023. Vol. 4, № 1. P. 22. https://doi.org/10.1186/s43074-023-00098-0
  18. Machine learning analysis of Raman spectra to quantify the organic constituents in complex organic-mineral mixtures / M. Zarei// Analytical Chemistry. 2023. Vol. 95, № 43. P. 15908–15916. https://doi.org/10.1021/acs.analchem.3c02348
  19. Аленичев М. К., Юшина А. А. Мера волновых чисел рамановских сдвигов широкого диапазона на основе полимерного материала обучения // Измерительная техника. (В печати.)
  20. Kumar K. Partial least square (PLS) analysis: Most favorite tool in chemometrics to build a calibration model // Resonance. 2021. Vol. 26. P. 429–442. https://doi.org/10.1007/s12045-021-1140-1
  21. Саакян А. В., Левин А. Д. Программное обеспечение для обработки спектральных данных методами хемометрики и машинного обучения // Аналитика. 2024. Т. 14, № 2. C. 154–160. https://doi.org/10.22184/2227–572X.2024.14.2.154.160

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).