The Raman Shift Wavenumber Measure and the Possibilities of its Application for Quantitative Analysis
- Authors: Yushina A.A.1, Alenichev M.K.1, Saakian A.V.1, Levin A.D.1
-
Affiliations:
- All-Russian Research Institute for Optical and Physical Measurements
- Issue: Vol 21, No 1 (2025)
- Pages: 22-37
- Section: MODERN METHODS OF ANALYSIS OF SUBSTANCES AND MATERIALS
- URL: https://journals.rcsi.science/2687-0886/article/view/369713
- DOI: https://doi.org/10.20915/2077-1177-2025-21-1-22-37
- ID: 369713
Cite item
Full Text
Abstract
About the authors
Anna A. Yushina
All-Russian Research Institute for Optical and Physical Measurements
Email: yushina@vniiofi.ru
Mikhail K. Alenichev
All-Russian Research Institute for Optical and Physical Measurements
Email: alenichev@vniiofi.ru
ORCID iD: 0000-0001-6336-8900
Aram V. Saakian
All-Russian Research Institute for Optical and Physical Measurements
Email: saakian.av@phystech.edu
ORCID iD: 0000-0002-4012-4935
Alexander D. Levin
All-Russian Research Institute for Optical and Physical Measurements
Email: levin-ad@vniiofi.ru
ORCID iD: 0000-0001-9087-952X
References
Benattia F. K., Arrar Z., Dergal F. Methods and applications of Raman spectroscopy: a powerful technique in modern research, diagnosis, and food quality control // Current Nutrition & Food Science. 2024. Vol. 20, № 1. P. 41–61. https://doi.org/10.2174/1573401319666230503150005 Xiao L., Feng S., Lu X. Raman spectroscopy: Principles and recent applications in food safety // Advances in Food and Nutrition Research. 2023. Vol. 106. P. 1–29. https://doi.org/10.1016/bs.afnr.2023.03.007 Khristoforova Y., Bratchenko L., Bratchenko I. Raman-based techniques in medical applications for diagnostic tasks: a review // International Journal of Molecular Sciences. 2023. Vol. 24, № 21. P. 15605. https://doi.org/10.3390/ijms242115605 Raman spectroscopy for viral diagnostics / J. Lukose// Biophysical Reviews. 2023. Vol. 15, № 2. P. 199–221. https://doi.org/10.1007/s12551-023-01059-4 Recent advancements and applications of Raman spectroscopy in pharmaceutical analysis / K. C. Shah// Journal of Molecular Structure. 2023. Vol. 1278. P. 134914. https://doi.org/10.1016/j.molstruc.2023.134914 Ott C. E., Arroyo L. E. Transitioning surface-enhanced Raman spectroscopy (SERS) into the forensic drug chemistry and toxicology laboratory: Current and future perspectives // Wiley Interdisciplinary Reviews: Forensic Science. 2023. Vol. 5, № 4. P. e1483. https://doi.org/10.1002/wfs2.1483 Chauhan S., Sharma S. Applications of Raman spectroscopy in the analysis of biological evidence // Forensic Science, Medicine and Pathology. 2024. Vol. 20, № 3. P. 1066–1090. https://doi.org/10.1007/s12024–023–00660-z Recent progresses in machine learning assisted Raman spectroscopy / Y. Qi// Advanced Optical Materials. 2023. Vol. 11, № 14. P. 2203104. https://doi.org/10.1002/adom.202203104 Berghian-Grosan C., Magdas D. A. Application of Raman spectroscopy and Machine Learning algorithms for fruit distillates discrimination // Scientific reports. 2020. Vol. 10, № 1. P. 21152. https://doi.org/10.1038/s41598-020-78159-8 Using Raman spectroscopy as a fast tool to classify and analyze Bulgarian wines-A feasibility study / V. Deneva// Molecules. 2019. Vol. 25, № 1. P. 170. https://doi.org/10.3390/molecules25010170 Learning algorithms for identification of whisky using portable Raman spectroscopy / K. J. Lee// Current Research in Food Science. 2024. Vol. 8. P. 100729. https://doi.org/10.1016/j.crfs.2024.100729 Black Carbon characterization with Raman spectroscopy and machine learning techniques: first results for urban and rural area / L. Drudi// Global NEST International Conference on Environmental Science & Technology: Collection of works 18th International Conference on Environmental Science and Technology CEST 2023, Athens, Greece, 30 August to 2 September 2023. https://doi.org/10.30955/gnc2023.00088 Machine-learning models for Raman spectra analysis of twisted bilayer graphene / N. Sheremetyeva// Carbon. 2020. Vol. 169. P. 455–464. https://doi.org/10.1016/j.carbon.2020.06.077 Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey / S. Hu// Scientific reports. 2022. Vol. 12, № 1. P. 3456. https://doi.org/10.1038/s41598-022-07222-3 Machine learning assisted Raman spectroscopy: A viable approach for the detection of microplastics / M. Sunil// Journal of Water Process Engineering. 2024. Vol. 60. P. 105150. https://doi.org/10.1016/j.jwpe.2024.105150 Machine learning-assisted raman spectroscopy and SERS for bacterial pathogen detection: clinical, food safety, and environmental applications / M. H. U. Rahman// Chemosensors. 2024. Vol. 12, № 7. P. 140. https://doi.org/10.3390/chemosensors12070140 Qi Y., Liu Y., Luo J. Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artificial intelligence fusion // PhotoniX. 2023. Vol. 4, № 1. P. 22. https://doi.org/10.1186/s43074-023-00098-0 Machine learning analysis of Raman spectra to quantify the organic constituents in complex organic-mineral mixtures / M. Zarei// Analytical Chemistry. 2023. Vol. 95, № 43. P. 15908–15916. https://doi.org/10.1021/acs.analchem.3c02348 Аленичев М. К., Юшина А. А. Мера волновых чисел рамановских сдвигов широкого диапазона на основе полимерного материала обучения // Измерительная техника. (В печати.) Kumar K. Partial least square (PLS) analysis: Most favorite tool in chemometrics to build a calibration model // Resonance. 2021. Vol. 26. P. 429–442. https://doi.org/10.1007/s12045-021-1140-1 Саакян А. В., Левин А. Д. Программное обеспечение для обработки спектральных данных методами хемометрики и машинного обучения // Аналитика. 2024. Т. 14, № 2. C. 154–160. https://doi.org/10.22184/2227–572X.2024.14.2.154.160
Supplementary files


