On the Development Prospects of Liquid Manometry in the Field of Low Absolute Pressure (0.1–1 000 Pa)
- Authors: Eikhvald T.A.1
-
Affiliations:
- D. I. Mendeleyev Institute for Metrology
- Issue: Vol 21, No 1 (2025)
- Pages: 14-21
- Section: MEASUREMENT STANDARDS
- URL: https://journals.rcsi.science/2687-0886/article/view/369712
- DOI: https://doi.org/10.20915/2077-1177-2025-21-1-14-21
- ID: 369712
Cite item
Full Text
Abstract
The article describes the principle of operation of a laser interferometric oil manometer from the GET 101-2011 – State Primary Measurement Standard for the pressure unit in the field of absolute pressure in the range 1 · 10–1 ÷ 7 · 105 Pa and its error budget. The article compares the metrological characteristics of the laser interferometric oil manometer with foreign analogues based on the results of international key comparisons. The problems of measuring low absolute pressure in the range of 0.1–1 000 Pa using the laser interferometric oil manometer and possible solutions to these problems are considered. A study of the influence of degassing and compressibility effects on the density of the working fluid of the laser interferometric oil manometer is described, and an analysis of the research results is presented. The idea of increasing the resolution of pressure measurements using the laser interferometric oil manometer is described. An analysis of the possibilities of measuring pressure using the laser interferometric oil manometer is carried out, provided that it is equipped with an optical interferometric device with phase modulation in order to increase the resolution of the pressure manometer and taking into account the research results of the physico-chemical properties of the working fluid of the pressure manometer.
About the authors
Tatiana A. Eikhvald
D. I. Mendeleyev Institute for Metrology
Email: eichwald@mail.ru
References
Новый Государственный первичный эталон единицы давления / И. В. Садковская// Мир измере- ний. 2012. № 2(132). С. 19–25. Final report on the key comparison CCM.P-K4.2012 in absolute pressure from 1 Pa to 10 kPa / J. Ricker// Metrologia. 2017. Vol. 54. Tech. Suppl. 07002. https://doi.org/10.1088/0026–1394/54/1A/07002 Heydemann P. L. M., Tilford C. R., Hyland R. W. Ultrasonic manometers for low and medium vacua under development at the National Bureau of Standards // Journal of Vacuum Science and Technology. 1977. Vol. 14.P. 597–605. https://doi.org/10.1116/1.569158 A new primary standard oil manometer for absolute pressure up to 10 kPa / Y. Li// Metrologia. 2015. Vol. 52, № 1. P. 111–120. https://doi.org/10.1088/0026–1394/52/1/111 Sabuga W., Hashad A. S., Ehlers S. 2D flow model for calculating effective area of piston-cylinder units // ACTA IMEKO. 2020. Vol. 9, № 5. P. 319–324. https://doi.org/10.21014/acta_imeko.v9i5.992 Садковская И. В., Эйхвальд А. И., Эйхвальд Т. А. Лазерный интерференционный масляный манометр Государственного первичного эталона единицы давления ГЭТ 101-2011 // Измерительная техника. 2019. № 3. С. 3–7. https://doi.org/10.32446/0368–1025it.2019-3-3-7 Poulter K. F., Nash P. J. An interferometric oil micromanometer // Journal of Physics E: Scientific Instruments. 1979. Vol. 12, № 5. P. 931–936. https://doi.org/10.1088/0022–3735/12/10/012 Садковская И. В., Эйхвальд А. И., Эйхвальд Т. А. Измерение сжимаемости рабочей жидкости лазерного интерференционного масляного манометра с помощью интерференционного пьезометра низкого давления // Измерительная техника. 2018. № 5. С. 47–49. Садковская И. В., Эйхвальд А. И., Эйхвальд Т. А. Исследование неопределенности измерений лазерного интерференционного масляного манометра высокого разрешения, вносимой оптическим интерферометром с фазовой модуляцией // Приборы. 2021. № 6 (252). С. 9–12.
Supplementary files


