On the Application of the Bayesian Approach to Estimating the Coverage Interval of a Bounded Measurand

Cover Page

Cite item

Full Text

Abstract

The problem of estimating the measurement uncertainty near the natural measurand limits is of significant interest to practicing metrologists and is far from being resolved. The article considers the Bayesian approach to constructing an asymmetric coverage interval and estimating measurement uncertainty in the case where the set of permissible values of the measured quantity is bounded. Of particular interest is the case when the measured value is located near the boundary of the set of its permissible values, since the constructed «traditional» symmetric interval corresponding to a coverage factor value of two (for a confidence level of 95 %) goes beyond the boundaries of this set and, as a consequence, do not provide the specified level of confidence probability.When implementing the Bayesian approach, an important starting point is the choice of a priori density distribution. Four options for choosing a prior probability density are considered, including an asymmetric distribution from the family of two-sided power distributions (TSP). Recommendations are given for their selection and application depending on the proximity of the a priori estimate of the lower limit of the measured value, as well as the measured value, to the upper limit of the range of permissible values, relative to the measurement uncertainty value.A specialized software has been developed to estimate the posterior density characteristics (expectation, mode and standard deviation) of measurand distributions and construct the shortest coverage interval, as well as to calculate the confidence level corresponding to the «traditional» coverage interval obtained using expanded uncertainty. The use of this software allows to obtain complete information about the measurement accuracy and to make an informed choice when presenting the measurement result.The results obtained may be of interest to practicing metrologists in the development and certification of measurement techniques, processing of experimental data and presentation of measurement results when characterizing standard samples, as well as specialists involved in the application of methods of probability theory and mathematical statistics in solving practical problems.

About the authors

A. V. Stepanov

D. I. Mendeleev Institute for Metrology

Email: stepanov17@yandex.ru
ORCID iD: 0000-0002-5917-1037

A. G. Chunovkina

D. I. Mendeleev Institute for Metrology

Email: a.g.chunovkina@vniim.ru
ORCID iD: 0000-0002-6222-5884

References

  1. Possolo A., Merkatas C., Bodnar O. Asymmetrical uncertainties // Metrologia. 2019. Vol. 56, № 4. P. 045009. http://dx.doi.org/10.1088/1681–7575/ab2a8d
  2. Sahlin E., Magnusson B., Svensson T. Calculation of uncertainty intervals for skewed distributions – Application in chemical analysis with large uncertainties. RISE Report 2021:07. Gothenburg, Sweden: RISE Research Institutes of Sweden, 2021. 43 p. http://dx.doi.org/10.13140/RG.2.2.27781.22241
  3. Cowen S., Ellison S. Reporting measurement uncertainty and coverage intervals near natural limits // The Analyst. 2006. Vol. 131, № 6. P. 710–717. http://dx.doi.org/10.1039/B518084H
  4. Korun M., Zorko B. Reporting measurement results of activities near the natural limit: Note and extension of the article «Interpretation of measurement results near the detection limit in gamma-ray spectrometry using Bayesian statistics» // Accreditation and Quality Assurance. 2013. Vol. 18, № 3. P. 175–179. http://dx.doi.org/10.1007/s00769-013-0963-1
  5. Wilrich P. Note on the correction of negative measured values if the measurand is nonnegative // Accreditation and Quality Assurance. 2014. Vol. 19, № 2. P. 81–85. http://dx.doi.org/10.1007/s00769-013-1028-1
  6. Wilrich P. Note on the correction of negative measured values if the measurand is positive or 0 with known probability // Accreditation and Quality Assurance. 2017. Vol. 22, № 4. P. 227–232. https://link.springer.com/article/10.1007/s00769-017-1264-x
  7. Lira I., Grientschnig D. Bayesian assessment of uncertainty in metrology: a tutorial // Metrologia. 2010. Vol. 47, № 3. http://dx.doi.org/10.1088/0026-1394/47/3/R01
  8. Elster C. Bayesian uncertainty analysis compared with the application of the GUM and its supplements // Metrologia. 2014. Vol. 51, № 4. P. S159–S166. http://dx.doi.org/10.1088/0026-1394/51/4/S159
  9. Chunovkina A. G., Stepanov A. V. Calculation of coverage intervals for repeated measurements (Bayesian inference) // Journal of Physics: Conference Series. 2019. Vol. 1065. P. 212009. http://dx.doi.org/10.1088/1742–6596/1065/21/212009
  10. Stepanov A. V., Chunovkina A. G, Burmistrova N. A. Calculation of coverage intervals: some study cases // Advanced Mathematical and Computational Tools in Metrology and Testing X. 2015. Vol. 86. P. 132–139. https://doi.org/10.1142/9789814678629_0015
  11. Meija J., Bodnar O., Possolo A. Ode to Bayesian methods in metrology // Metrologia. 2023. Vol. 60, № 5. P. 052001. http://dx.doi.org/10.1088/1681–7575/acf66b
  12. Van Dorp J. R., Kotz S. The standard two-sided power distribution and its properties // The American Statistician. 2002. Vol. 56, № 2. P. 90–99. https://doi.org/10.1198/000313002317572745
  13. Kotz S., Van Dorp J. R. Beyond beta: other continuous families of distributions with bounded support and applications. World scientific publishing, 2004. 308 p. https://doi.org/10.1142/5720
  14. Herrerias-Velasco J. M., Herrerias-Pleguezuelo R., Van Dorp J. R. The generalized two-sided power distribution // Journal of Applied Statistics. 2009. Vol. 36, № 5. P. 573–587. http://dx.doi.org/10.1080/02664760802582850
  15. Stepanov A. V., Chunovkina A. G. On testing of the homogeneity of variances for two-sided power distribution family // Accreditation and Quality Assurance. 2023. Vol. 28. P. 129 –137. http://dx.doi.org/10.1007/s00769-022-01525-8
  16. Степанов А. В., Чуновкина А. Г. Об оценке параметров асимметричного TSP распределения и его применении // Вероятностные методы в дискретной математике. 2024: тезисы докладов XI Международной Петрозаводской конференции, Петрозаводск, Карелия, 27–31 мая 2024 г. Петрозаводск : Карельский научный центр РАН, 2024. С. 106–108.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).