Gas Chromatographic Method for Determination of Mass Concentration of Acrolein in Grain and Fruit Distillates
- Authors: Shelekhova N.V.1
-
Affiliations:
- Russian Scientific Research Institute of Food Biotechnology – Affiliated Branch of the Federal Research Center of Nutrition, Biotechnology and Food Safety
- Issue: Vol 21, No 3 (2025)
- Pages: 124-137
- Section: MODERN METHODS OF ANALYSIS OF SUBSTANCES AND MATERIALS
- URL: https://journals.rcsi.science/2687-0886/article/view/365488
- DOI: https://doi.org/10.20915/2077-1177-2025-21-3-124-137
- EDN: https://elibrary.ru/LEQYAP
- ID: 365488
Cite item
Full Text
Abstract
Introduction. Acrolein is one of the most widespread toxicants. Under conditions of chronic intoxication, it has a general irritant, allergenic, mutagenic, carcinogenic, embryotoxic effect on the human body. Acrolein can be found in alcoholic beverages, some food products, including fats and frying oils. A review of scientific literature revealed significant knowledge gaps about the acrolein content in grain and fruit distillates, which is explained by the insufficient development of reliable analytical methods for its determination. The content of acrolein in grain and fruit distillates is not regulated by regulatory documents, which served as a prerequisite for conducting this study.Objective of the study. To develop an express method for the qualitative and quantitative determination of acrolein in grain and fruit distillates using the gas chromatography method.Objects and methods of the study. The objects of the study were model and calibration solutions of acrolein of 20 samples of fruit and grain distillates. Analytical studies were performed on a gas chromatograph Agilent 6850 with flame ionization detection. ChemStation A.10.02 software was used to process the measurements.Results and discussion. In the study, optimal chromatography modes were selected that ensure express determination of acrolein content in the mass concentration range of 0.3–10 mg/dm3 in grain and fruit distillates without preliminary sample preparation in 4–5 min. The stability of the „retention time“ and „peak area“ parameters for acrolein was established. It was experimentally confirmed that the calibration graph for acrolein has a linear dependence in the mass concentration range of 0.3–10 mg/dm3 . A correlation dependence between the sample concentration and the detector response was found, the correlation coefficient R2 is not less than 0.99. As a result of studies, a method for the qualitative and quantitative determination of acrolein in grain and fruit distillates was developed. The limits of relative error of the developed method with a confidence of P = 0.95 in the range of mass concentrations from 0.3 to 10 mg/dm3 are less than 28 %.Conclusions. A new methodological approach to determining acrolein in grain and fruit distillates based on the gas chromatography method is proposed. The conducted research is the basis for the development of a metrologically certified method for the qualitative and quantitative determination of acrolein in alcoholic beverages and the development of reference materials to improve the measurement accuracy. The development of this research area will provide new experimental data on the chemical composition of alcoholic beverages and will improve the quality and safety of alcoholic beverages.
About the authors
N. V. Shelekhova
Russian Scientific Research Institute of Food Biotechnology – Affiliated Branch of the Federal Research Center of Nutrition, Biotechnology and Food Safety
Email: 4953610101@mail.ru
ORCID iD: 0000-0001-7735-2942
References
Stevens J. F., Maier C. S. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease// Molecular Nutrition & Food Research. 2008. Vol. 52, № 1. P. 7–25. https://doi.org/10.1002/mnfr.200700412 Schieweck A., Uhde E., Salthammer T. Determination of acrolein in ambient air and in the atmosphere of environmental test chambers// Environmental Science: Processes & Impacts. 2021. Vol. 23, № 11. P. 1729–1746. https://doi.org/10.1039/d1em00221j Турук-Пчелина З. Ф. К вопросу о выделении акролеина в воздух при изготовлении пищи // Гигиена и санитария. 1960. Т. 39, № 5. С. 96–97. Toxicology and risk assessment of acrolein in food / K. Abraham// Molecular Nutrition & Food Research. 2011. Vol. 55, № 9. P. 1277–1290. https://doi.org/10.1002/mnfr.201100481 Origin and fate of acrolein in foods / K. Jiang// Foods. 2022. Vol. 11, № 13. P. 1976. https://doi.org/10.3390/foods11131976 Exposure risk to carbonyl compounds and furfuryl alcohol through the consumption of sparkling wines / G. P. Peterle// Ciência Rural. 2019. Vol. 49, № 3. P. e20180986. https://doi.org/10.1590/0103-8478cr20180986 Acrolein production by bacteria found in distillery grain mashes / W. C. Serjak// Journal of Applied Microbiology. 1954. № 2. P. 14–20. https://doi.org/10.1128/am.2.1.14-20.1954 Sobolov M., Smiley K. L. Metabolism of glycerol by an acrolein-forming lacto-bacillus // Journal of Bacteriology. 1960. Vol. 79, № . 2. P. 261–266. https://doi.org/10.1128/jb.79.2.261-266.1960 Mills D. E., Baugh W. D., Conner H. A. Studies on the formation of acrolein in distillery mashes // Journal of Applied Microbiology. 1954. Vol. 2, № . 1. P. 9–13. https://doi.org/10.1128/am.2.1.9-13.1954 Цыганков П. С., Цыганков С. П. Руководство по ректификации спирта. М. : Пищпромиздат, 2001. 400 с. Климовский Д. А., Смирнов В. А., Стабников В. Н. Технология спирта. М. : Пищевая промышленность, 1967. 346 c. Фараджева Е. Д., Федоров В. А. Общая технология бродильных производств: учебник для вузов. М. : Колос, 2002. 408 с. Determination of the composition of volatiles in Cognac (Brandy) by headspace gas chromatography– mass spectrometry / A. G. Panosyan// Journal of Analytical Chemistry. 2001. Vol. 56. P. 945–952. https://doi.org/10.1023/A:1012365629636 Miller B. E., Danielson N. D. Derivatization of vinyl aldehydes with anthrone prior to high-performance liquid chromatography with fluorometric detection // Journal of Analytical Chemistry. 1988. Vol. 60, № . 7. P. 622–626. https://doi.org/10.1021/ac00158a004 Development of a method for determination of target toxic carbonyl compounds in must and wine using HS-SPMEGC/MS-SIM after preliminary GC× GC/TOFMS analyses / D. C. Ferreira// Food Analytical Methods. 2019. Vol. 12. P. 108–120. https://doi.org/10.1007/s12161-018-1343-6 Validation of an analytical method using HS-SPME-GC/MS-SIM to assess the exposure risk to carbonyl compounds and furan derivatives through beer consumption / K. C. Hernandes// Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment. 2019. Vol. 36, № 12. P. 1808–1821. https://doi.org/10.1080/19440049.2019.1672897 Шелехова Н. В. Методы газовой хроматографии и капиллярного электрофореза для исследования химического состава выдержанных зерновых дистиллятов // Сорбционные и хроматографические процессы. 2024. Т. 24, № 4. С. 556–571. https://doi.org/10.17308/sorpchrom.2024.24/12410 Шелехова Н. В. Экспресс метод определения анионов в алкогольных напитках на основе сочетания КЭ-КД // Сорбционные и хроматографические процессы. 2023. Т. 23, № 2. С. 199–215. https://doi.org/10.17308/sorpchrom.2023.23/11144 Шелехова Н. В., Шелехова Т. М. Исследование этанольного экстракта древесины дуба методами капиллярного электрофореза, газовой хроматографии, хромато-масс-спектрометрии // Сорбционные и хроматографические процессы. 2021. Т. 21, № 6. С. 868–878. https://doi.org/10.17308/sorpchrom.2021.21/3833 Байгазиева Г. И., Кекибаева А. К. Технология ликероводочного производства: лабораторный практикум. Алматы : АТУ, 2015. 87 с. Илларионова Е. А., Сыроватский И. П. Газовая хроматография. Теоретические основы метода: учебное пособие. Иркутск : ИГМУ, 2018. 52 с. Вяхирев Д. А., Шушунова А. Ф. Руководство по газовой хроматографии. М. : Высшая школа, 1975. 302 с. Логутов В. И. Детекторы для газовых хроматографов. Часть 1. Выбор детектора, подготовка к работе и оценка состояния хроматографа по основным характеристикам детектора: учебно-методическое пособие. Нижний Новгород : ННГУ, 2017. 52 с. Барановская В. Б., Медведевских М. Ю., Карпов Ю. А. Актуальные проблемы качества химического анализа // Аналитика и контроль. 2021. Т. 25, № 4. С. 273–279. https://doi.org/10.15826/analitika.2021.25.4.005 Современная метрология физико-химических измерений : монография / А. Н. Пронин. М. : ООО Издательство ТРИУМФ, 2022. 561 с. https://doi.org/10.32986/978-5-94472-103-7-25-07-2022 Гапеева В. Д., Цыбенко В. А. Отсеивание грубых погрешностей результатов измерений с помощью различных критериев в среде Excel // Молодой ученый. 2021. № 49 (391). С. 20–27. Комплекс стандартных образцов для поверки и калибровки универсальных хроматографических приборов / И. Ю. Ткаченко// Эталоны. Стандартные образцы. 2024. Т. 20, № 1. С. 31–46. https://doi.org/10.20915/2077-1177-2024-20-1-31-46 Валидация аналитических методик: пер. с англ. яз. 2-го изд. под ред. Г. Р. Нежиховского. Количественное описание неопределенности в аналитических измерениях: пер. с англ. яз. 3-го изд. под ред. Р. Л. Кадиса: руководства для лабораторий. СПб. : ЦОП Профессия, 2016. 312 с. Алгоритмы оценивания однородности стандартных образцов состава и свойств дисперсионных монолитных материалов / Е. П. Собина// Эталоны. Стандартные образцы. 2023. Т. 19, № 3. С. 77–91. https://doi.org/10.20915/2077-1177-2023-19-3-77-91 Об оценке стабильности стандартных образцов / П. В. Мигаль// Эталоны. Стандартные образцы. 2023. Т. 19, № 3. С. 65–75. https://doi.org/10.20915/2077-1177-2023-19-3-65-75 Казакова Е. А., Бирисен Т. С. Разработка и применение стандартных образцов предприятия в практике аналитических лабораторий // Литье и металлургия. 2020. № 1. С. 34–37. https://doi.org/10.21122/1683-6065-2020-1-34-37.
Supplementary files

