Rare metal concentration features at a caldera type deposit in the Miocene-Quaternary boron-lithium province of North America. Search for analogues

Capa

Citar

Texto integral

Resumo

   The fact that lithium has a wide range of applications in many fields including the production of lithium-ion batteries determines an increased interest in lithium mining. The most common types of lithium raw material sources are underground brines, saline lakes (“salars”), and ore minerals. In 2021, the first and unique deposit of lithium clays was discovered in the McDermitt caldera (Nevada, USA). Its resources are estimated at 13.7 million tons of lithium carbonate with the lithium concentration of 2231 mg/l. The uniqueness of this deposit raises the interest in the formation of model ideas about lithiumclay genesis to search for analogous deposits and explore them.   The purpose of the article is to provide an overview of the geological structure and describe the main development periods of the McDermitt caldera.   The authors also characterize the potential sources of lithium (felsic igneous rocks and hydrothermal fluids), migration paths of lithium-bearing brines as well as the formation mechanism of clays with a high lithium content (hectorite, illite and smectite). A generalized formation model of this type of deposits is proposed. Particular attention is paid to the role of hydrothermal fluids as a potential additional source of lithium “supply” to the caldera basin. Key criteria characteristic of industrial accumulations of lithium of this type have been formed in order to explore and identify analogous deposits. In conclusion, the authors put forward a hypothesis about the presence of deposits that are analogous to the Thacker Pass in the McDermitt caldera in the lithium province on the Altiplano-Puna plateau in one of the calderas of the Altiplano-Puna volcanic complex, and in Eastern Kamchatka.

Sobre autores

D. Pogrebnaia

Institute of the Earth Crust SB RAS; LLC Energy Craft

Email: dapogrebnaya@energy-craft.com
ORCID ID: 0009-0008-6658-8923

A. Vakhromeev

Institute of the Earth Crust SB RAS; Irkutsk National Research Technical University

Email: andrey_igp@mail.ru
ORCID ID: 0000-0002-0712-6568

Bibliografia

  1. Боярко Г.Ю., Хатьков В.Ю., Ткачева Е.В. Сырьевой потенциал лития России // Известия Томского политехнического университета. Инжиниринг георесурсов. 2022. Т. 333. № 12. C. 7–16. doi: 10.18799/24131830/2022/12/3975. EDN: HORMRU.
  2. Kesler S.E., Gruber P.W., Medina P.A., Keoleian G.A., Everson M.P., Wallington T.J. Global lithium resources: relative importance of pegmatite, brine and other deposits // Ore Geology Reviews. 2012. Vol. 48. P. 55–69. doi: 10.1016/J.OREGEOREV.2012.05.006.
  3. Романюк Т.В., Ткачев А.В. Геодинамический сценарий формирования крупнейших мировых неоген-четвертичных бор-литиеносных провинций. М.: Светоч Плюс, 2010. 304 с.
  4. Вахромеев А.Г., Литвинова И.В., Мисюркеева Н.В., Алексеев С.В., Погребная Д.А. К минерагении лития гидроминеральной провинции Сибирской платформы // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту) : материалы науч. конф. (г. Иркутск, 18–21 октября 2022 г.). Иркутск, 2022. Т. 20. С. 43–45. EDN: OECOKO.
  5. Вахромеев А.Г., Зелинская Е.В., Литвинова И.В., Погребная Д.А. Модель вторичного концентрирования литиеносных рассолов в кипящих флюидных системах магматогенноосадочных бассейнов гидроминеральной провинции Сибирской платформы // Геотермальная вулканология, гидрогеология, геология нефти и газа (Geothermal Volcanology Workshop 2023) : материалы Всерос. науч. конф. с междунар. участием (г. Петропавловск-Камчатский, 4–9 сентября 2023 г.). Петропавловск-Камчатский, 2023. С. 11–12.
  6. Tabelin C.B., Dallas J.A., Casanova S., Pelech T., Bournival G., Saydam S., et al. Towards a low-carbon society : a review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives // Minerals Engineering. 2021. Vol. 163. P. 106743. doi: 10.1016/j.mineng.2020.106743.
  7. Castor S.B., Henry C.D. Lithium-rich claystone in the McDermitt Caldera, Nevada, USA: geologic, mineralogical, and geochemical characteristics and possible origin // Minerals. 2020. Vol. 10. Iss. 1. P. 68. doi: 10.3390/min10010068.
  8. DiPietro J.A. Geology and landscape evolution. General principles applied to the United States. Elsevier, 2018. 580 p.
  9. Henry C.D., Castor S.B., Starkel W., Ellis B.S., Wolff J.A., Laravie J.A., et al. Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA // Geosphere. 2017. Vol. 13. Iss. 4. doi: 10.1130/GES01454.1.
  10. Benson T.R., Matthew A.C., Dilles J.H. Hydrothermal enrichment of lithium in intracaldera illite-bearing claystones // Science Advances. 2023. Vol. 9. Iss. 35. P. 1–10. doi: 10.1126/sciadv.adh8183.
  11. Benson T.R., Coble M.A., Rytuba J.J., Mahood G.A. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins // Nature Communications. 2017. Vol. 8. P. 270. doi: 10.1038/s41467-017-00234-y.
  12. Ingraffia J.T., Ressel M.W., Benson T.R. Thacker Pass lithium clay deposit, McDermitt caldera, north-central Nevada: Devitrification of McDermitt Tuff as the main lithium source // Geological Society of Nevada Special Publication. 2020. P. 395–410.
  13. Gallup D.L. Geochemistry of geothermal fluids and well scales, and potential for mineral recovery // Ore Geology Reviews. 1998. Vol. 12. Iss. 4. P. 225–236. doi: 10.1016/S0169-1368(98)00004-3.
  14. Топчиева О.М., Петровский В.А., Сухарев А.Е. Условия образования минеральных включений в гидротермальных метасоматитах г. Двугорбой, Южная Камчатка // Вестник Пермского университета. Геология. 2018. Т. 17. № 1. C. 1–10. doi: 10.17072/psu.geol.17.1.1. EDN: LAUVYD.
  15. Кирюхин А.В. Магматический фракинг и гидротермальные системы под активными вулканами // Геотермальная вулканология, гидрогеология, геология нефти и газа (Geothermal Volcanology Workshop 2020) : материалы Всерос. науч. конф. с междунар. участием (г. Петропавловск-Камчатский, 3–8 сентября 2020 г.). Петропавловск-Камчатский, 2020. C. 27–31. EDN: MWRRKH.
  16. Леднева В.П., Лурье М.Л. Некоторые особенности триасового магматизма Тунгусской синеклизы // Проблемы вулканогенно-осадочного литогенеза : сб. статей / под ред. Г.С. Дзоценидзе, И.В. Соколова, И.В. Хворовой. М.: Наука, 1974. С. 47–51.
  17. Рычагов С.Н. Гигантские газо-гидротермальные системы и их роль в формировании пародоминирующих геотермальных месторождений и рудной минерализации // Вулканология и сейсмология. 2014. № 2. C. 3–28. doi: 10.7868/S0203030614020060. EDN: SAIXYV.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».