Mapping of lakes and heave mounds in the Arctic using synthetic aperture radar and interferometric synthetic aperture radar data with deep learning technologies

Cover Page

Cite item

Full Text

Abstract

This paper deals with the process of developing and training a U-Net neural network for image segmentation of lakes and hillocks based on synthetic aperture radar and interferometric synthetic aperture radar data. The main goal of the work is to create an effective deep learning model capable of automatically identifying lakes and heave mounds based on complex radar images. To achieve this goal, several stages were carried out, including data collection and annotation, selection of the neural network architecture, training and validation of the model, as well as evaluation of its performance. At the beginning of the work, the process of creating a training dataset is described, which includes annotating images, highlighting features, and preparing data for training. Next, we consider the U-Net architecture, which was chosen because of its ability to efficiently segment objects in images. The choice of hyperparameters, such as the number of filters, the size of the convolution core and activation functions, is justified, and the Adam optimizer is used to achieve fast and stable convergence of the model. The learning and validation process of the model is described in detail with an emphasis on using the validation subset to monitor performance. Regularization methods, including early stopping, are used to prevent overfitting and improve the generalizing ability of the model. As a result, the importance of using deep learning for synthetic aperture radar and interferometric synthetic aperture radar data analysis is demonstrated, as well as confirmation of the effectiveness of the U-Net model for solving segmentation problems.

About the authors

A. A. Yuriev

Institute of the Earth’s Crust SB RAS

Email: antonyrevgeo@mail.ru
ORCID iD: 0000-0002-2452-4840

I. A. Shelokhov

Institute of the Earth’s Crust SB RAS; Scientific Center for the Study of the Arctic

Email: sia@crust.irk.ru
ORCID iD: 0000-0003-3523-4440

I. V. Buddo

Institute of the Earth’s Crust SB RAS; Irkutsk National Research Technical University

Email: biv@crust.irk.ru
ORCID iD: 0000-0002-5204-9530

A. A. Rybchenko

Institute of the Earth’s Crust SB RAS

Email: rybchenk@crust.irk.ru
ORCID iD: 0000-0003-2615-8423

References

  1. Жилина И.Ю. Потепление в Арктике: возможности и риски // Экономические и социальные проблемы России. 2021. № 1. С. 66–87. https://doi.org/10.31249/espr/2021.01.04. EDN: GSPTRV.
  2. Гудков А.Б., Попова О.Н., Небученных А.А., Богданов М.Ю. Эколого-физиологическая характеристика климатических факторов Арктики. Обзор литературы // Морская медицина. 2017. Т. 3. № 1. С. 7–13. https://doi.org/10.22328/2413-5747-2017-3-1-7-13. EDN: YHDEOH.
  3. Воронина С.А., Порфирьев Б.Н., Семикашев В.В., Терентьев Н.Е., Елисеев Д.О., Наумова Ю.В. Последствия изменений климата для экономического роста и развития отдельных секторов экономики российской Арктики // Арктика: экология и экономика. 2017. № 4. С. 4–17. https://doi.org/10.25283/2223-4594-2017-4-4-17. EDN: YMRLRQ.
  4. Куделькин Н.С. Арктика и глобальное потепление: адаптация к изменению климата и охрана окружающей среды // Юридические исследования. 2022. № 1. С. 1–16. https://doi.org/10.25136/2409-7136.2022.1.37049. EDN: KNUXCH.
  5. Эдельгериев Р.С.Х., Романовская А.А. Новые подходы к адаптации к изменениям климата на примере Арктической зоны Российской Федерации // Метеорология и гидрология. 2020. № 5. С. 12–28. EDN: TRDOGS.
  6. Васильев А.А., Гравис А.Г., Губарьков А.А., Дроздов Д.С., Коростелев Ю.В., Малкова Г.В.. Деградация мерзлоты: результаты многолетнего геокриологического мониторинга в западном секторе российской Арктики // Криосфера Земли. 2020. Т. 24. № 2. С. 15–30. https://doi.org/10.21782/KZ1560-7496-2020-2(15-30). EDN: HROYGC.
  7. Павлов А.В., Малкова Г.В. Мелкомасштабное картографирование трендов современных изменений температуры грунтов на севере России // Криосфера Земли. 2009. Т. 13. № 4. C. 32–39. EDN: KYRZGR.
  8. Агарков С.А., Козьменко С.Ю., Щеголькова А.А. Эпоха глобального потепления: перспективы экономического взаимодействия в «Новой Арктике» // Север и рынок: формирование экономического порядка. 2019. № 1. С. 26–36. https://doi.org/10.25702/KSC.2220-802X.1.2019.63.26-36. EDN: ZQNNOP.
  9. Chuang K.-S., Tzeng H.-L., Chen S., Wu J., Chen T.-J. Fuzzy c-means clustering with spatial information for image segmentation // Computerized Medical Imaging and Graphics. 2006. Vol. 30. Iss. 1. P. 9–15. https://doi.org/10.1016/j.compmedimag.2005.10.001.
  10. Anantrasirichai N., Biggs J., Kelevitz K., Sadeghi Z., Wright T., Thompson J., et al. Detecting ground deformation in the built environment using sparse satellite InSAR data with a convolutional neural network // IEEE Transactions on Geoscience and Remote Sensing. 2021. Vol. 59. Iss. 4. P. 2940–2950. https://doi.org/10.1109/TGRS.2020.3018315.
  11. Mavrovic A., Sonnentag O., Lemmetyinen J., Baltzer J.L., Kinnard C., Roy A. Reviews and syntheses: recent advances in microwave remote sensing in support of terrestrial carbon cycle science in Arctic-boreal regions // Biogeosciences. 2023. Vol. 20. Iss. 14. P. 2941–2970. https://doi.org/10.5194/bg-20-2941-2023.
  12. Merchant M., Bourgeau-Chavez L., Mahdianpari M., Brisco B., Obadia M., Devries B., et al. Arctic ice-wedge landscape mapping by CNN using a fusion of Radarsat constellation Mission and ArcticDEM // Remote Sensing of Environment. 2024. Vol. 304. P. 114052. https://doi.org/10.1016/j.rse.2024.114052.
  13. Li X., Zhang K., Niu J., Liu L. A machine learning-based dynamic ensemble selection algorithm for microwave retrieval of surface soil freeze/thaw: a case study across China // GIScience & Remote Sensing. 2022. Vol. 59. Iss. 1. P. 1550–1569. https://doi.org/10.1080/15481603.2022.2122117.
  14. Pan J., Zhao R., Xu Z., Cai Z., Yuan Y. Quantitative estimation of sentinel-1A interferometric decorrelation using vegetation index // Frontiers in Earth Science. 2022. Vol. 10. P. 1016491. https://doi.org/10.3389/feart.2022.1016491.
  15. Byers M., Covey N. Arctic SAR and the “security dilemma” // International Journal. 2019. Vol. 74. Iss. 4. P. 499517. https://doi.org/10.1177/0020702019890339.
  16. Sydnes A.K., Sydnes M., Antonsen Y. International cooperation on search and rescue in the Arctic // Arctic Review on Law and Politics. 2017. Vol. 8. P. 109–136. https://doi.org/10.23865/arctic.v8.705.
  17. Morris K., Jeffries M.O., Weeks W.F. Ice processes and growth history on Arctic and sub-Arctic lakes using ERS-1 SAR data // Polar Record. 1995. Vol. 31. Iss. 177. P. 115–128. https://doi.org/10.1017/S0032247400013619.
  18. Liu X., Zhang Y., Jing H., Wang L., Zhao S. Ore image segmentation method using U-Net and Res_Unet convolutional networks // RSC Advances. 2020. Vol. 10. Iss. 16. P. 9396–9406. https://doi.org/10.1039/C9RA05877J.
  19. Norouzi A., Rahim M.S.M., Altameem A., Saba T., Rad A.E., Rehman A., et al. Medical image segmentation methods, algorithms, and applications // IETE Technical Review. 2014. Vol. 31. Iss. 3. P. 199–213. https://doi.org/10.1080/02564602.2014.906861.
  20. Печкин А.Д., Кириллова Т.К. Оценка и перспективы развития глубокого обучения искусственных нейронных сетей // Молодая наука Сибири. 2021. № 1. С. 375–380. EDN: SDQIAU.
  21. Грицков И.О., Говоров А.В., Васильев А.О., Ходырева Л.А., Ширяев А.А., Пушкарь Д.Ю. Data Science ‒ глубокое обучение нейросетей и их применение в здравоохранении // Здоровье мегаполиса. 2021. Т. 2. № 2. С. 109–115. https://doi.org/10.47619/2713-2617.zm.2021.v2i2;109-115. EDN: SGWBPD.
  22. Buddo I.V., Sharlov M., Shelokhov I., Misyurkeeva, N., Seminsky I., Selyaev V., et al. Applicability of transient electromagnetic surveys to permafrost imaging in Arctic West Siberia // Energies 2022. Vol. 15. Iss. 5. P. 1816. https://doi.org/10.3390/en15051816.
  23. Buddo I., Misyurkeeva N., Shelokhov I., Shein A., Sankov V., Rybchenko A., et al. Modeling of explosive Pingo-like structures and fluid-dynamic processes in the Arctic permafrost: workflow based on integrated geophysical, geocryological, and analytical data // Remote Sensing. 2024. Vol. 16. Iss. 16. P. 2948. https://doi.org/10.3390/rs16162948.
  24. Misyurkeeva N., Buddo I., Kraev G., Smirnov A., Nezhdanov A., Shelokhov I., et al. Periglacial landforms and fluid dynamics in the permafrost domain: a case from the Taz Peninsula, West Siberia // Energies. 2022. 15. Iss. 8. P. 2794. https://doi.org/10.3390/en15082794.
  25. Misyurkeeva N., Buddo I., Shelokhov I., Smirnov A., Nezhdanov A., Agafonov Y. The structure of permafrost in northern West Siberia: geophysical evidence // Energies. 2022. Vol. 15. Iss. 8. P. 2847. https://doi.org/10.3390/en15082847.
  26. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Kargina T., Chuvilin E., Bukhanov B., et al. New catastrophic gas blowout and giant crater on the Yamal Peninsula in 2020: results of the expedition and data processing // Geosciences. 2021. Vol. 11. Iss. 2. P. 71. https://doi.org/10.3390/geosciences11020071.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).