Studying the effect of carbon dioxide oil solubility on asphaltene aggregation under conditions of the Bashkortostan Republic fields

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to study the effect of carbon dioxide oil solubility on the aggregation of asphaltene associates and decrease of oil permeability of sandstones. Consideration is given to the interaction variants of oil and carbon dioxide in a free volume before being injected into a porous medium and immediately in the porous medium. The influence of oil composition on the aggregation of asphaltene associates is studied. The effect of the dissolved carbon dioxide on associate dispersion in oil is examined through oil filtering in sandstones. If asphaltene aggregation occurs in a porous medium it causes pore plugging leading to reduced permeability, complicates the development of carbon dioxide injection wells and, as a result, prevents from achieving the planned indicators of oil production and oil recovery. It is found that in the case when oil interacts with carbon dioxide in the free volume before being injected into a porous medium, the increase in the volume of filtered oil and the concentration of carbon dioxide dissolved in oil, and decrease in sandstone permeability reduce the relative mobility of oil with the dissolved carbon dioxide. The significant influence of sandstone permeability on the experimental results indicates that the sizes of asphaltene aggregates are comparable to the sizes of small pores. We have not observed complete attenuation of filtration after passing of oil with dissolved carbon dioxide through sandstones. Based on the analysis of changes in oil composition and properties carried out in the laboratory experiments on oil displacement by carbon dioxide rims, it has been determined that aggregation of asphaltene associates takes place under immediate contact of oil and carbon dioxide in a porous medium. The higher the asphaltene content in oil, the lower the formation permeability, whereas tight formations feature a more significant decrease in permeability.

About the authors

A. I. Shayakhmetov

Ufa State Petroleum Technological University

Email: airat_shayahmeto@mail.ru

V. L. Malyshev

Ufa State Petroleum Technological University

Email: victor.l.malyshev@mail.ru

E. F. Moiseeva

Ufa State Petroleum Technological University

Email: elena.f.moiseeva@gmail.com

A. I. Ponomarev

Ufa State Petroleum Technological University

Email: pnmrv@mail.ru

Yu. V. Zeigman

Ufa State Petroleum Technological University

Email: jvzeigman@yandex.ru

References

  1. Aycaguer A.-C., Lev-On M., Winer A.M. Reducing carbon dioxide emissions with enhanced oil recovery projects: a life cycle assessment approach // Energy & Fuels. 2001. Vol. 15. Iss.
  2. P. 303–308. https://doi.org/ 10.1021/ef000258a 2. Wu S., Zhao D., Li Z., Zhu Q. New evaluation function for the oil recovery and carbon sequestration of CO2- EOR project // International Journal of Computer Applications in Technology. 2016. Vol. 54. Iss. 1. P. 14–22. https://doi.org/10.1504/IJCAT.2016.077794
  3. Song Z., Zhu W., Wang X., Guo S. 2-D pore-scale experimental investigations of asphaltene deposition and heavy oil recovery by CO2 flooding // Energy & Fuels. 2018. Vol. 32. Iss. 3. P. 3194–3201. https://doi.org/ 10.1021/acs.energyfuels.7b03805
  4. Liu B., Li J., Qi C., Li X., Mai T., Zhang J. Mechanism of asphaltene aggregation induced by supercritical CO2: insights from molecular dynamics simulation // RSC Advances. 2017. Vol. 80. Iss. 7. P. 50786–50793. https://doi.org/10.1039/c7ra09736k
  5. Farajzadeh R., Andrianov A., Bruining H., Zitha P.L.J. Comparative study of CO2 and N2 foams in porous media at low and high pressure-temperatures // Industrial & Engineering Chemistry Research. 2009. Vol. 48. Iss. 9. P. 4542–4552. https://doi.org/10.1021/ie801760u
  6. Godec M.L., Kuuskraa V.A., Dipietro P. Opportunities for using anthropogenic CO2 for enhanced oil recovery and CO2 storage // Energy & Fuels. 2013. Vol. 27. Iss. 8. P. 4183–4189. https://doi.org/10.1021/ef302040u
  7. Zhang N., Wei M., Bai B. Statistical and analytical review of worldwide CO2 immiscible field applications // Fuel. 2018. Vol. 220. P. 89–100. https://doi.org/ 10.1016/j.fuel.2018.01.140
  8. Alfarge D., Wei M., Bai B. CO2-EOR mechanisms in huff-n-puff operations in shale oil reservoirs based on history matching results // Fuel. 2018. Vol. 226. P. 112–120. https://doi.org/10.1016/j.fuel.2018.04.012
  9. Лозин Е.В., Масагутов Р.Х., Баймухаметов К.С., Родионов В.П., Никитин В.Т., Алмаев Р.Х.. Вклад ученых Башнипинефти в развитие нефтедобывающей промышленности Башкортостана: монография. Уфа: Башнефть, 2002. 304 с.
  10. Jafari Behbahani T., Ghotbi C., Taghikhani V., Shahrabadi A. Investigation of asphaltene adsorption in sandstone core sample during CO2 injection: experimental and modified modeling // Fuel. 2014. Vol. 133. P. 63–72. https://doi.org/10.1016/j.fuel.2014.04.079
  11. Leontaritis K.J., Ali Mansoori G. Asphaltene deposition: a survey of field experiences and research approaches // Journal of Petroleum Science and Engineering. 1988. Vol. 1. Iss. 3. P. 229–239. https://doi.org/10.1016/ 0920-4105(88)90013-7
  12. Almehaideb R.A. Asphaltene precipitation and deposition in the near wellbore region: a modeling approach // Journal of Petroleum Science and Engineering. 2004. Vol. 42. Iss. 2-4. P. 157–170. https://doi.org/ 10.1016/j.petrol.2003.12.008
  13. Трухина О.С., Синцов И.А. Опыт применения углекислого газа для повышения нефтеотдачи пластов // Успехи современного естествознания. 2016. № 3. С. 205–209.
  14. Разработка нефтяных месторождений. В 4 т. Т. 4. Закачка и распределение технологических жидкостей по объектам разработки / ред. Н.И. Хисамутдинов, Г.З. Ибрагимов. М.: Изд-во ВНИИОЭНГ, 1994. 262 с.
  15. Штоф М.Д., Райхман Б.Н., Никитина Р.В., Фаловский В.И. Изменение свойств нефти пласта А3 Козловского месторождения при ее смешении с углекислотой // Труды Гипровостокнефти: сб. науч. тр. Куйбышев: Изд-во Гипровостокнефти, 1984. С. 102–105.
  16. Калинин С.А., Морозюк О.А. Разработка месторождений высоковязкой нефти в карбонатных коллекторах с использованием диоксида углерода. Анализ мирового опыта // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. 2019. Т. 19. № 4. С. 373–387.
  17. Mamedov Y.G., Bokserman A.A. Application of Improved Oil Recovery in the Soviet Union // SPE/DOE Enhanced Oil Recovery Symposium (Tulsa, 22–24 April 1992). Tulsa: Society of Petroleum Engineers, 1992. P. 53– 64. https://doi.org/10.2118/24162-MS
  18. Халимов Э.М., Леви Б.И., Дзюба В.И., Пономарев С.А. Технология повышения нефтеотдачи пластов. М.: Недра, 1984. 271 с.
  19. Степанова Г.С. Газовые и водогазовые методы воздействия на нефтяные пласты. М.: Газоил пресс, 2006. 200 с.
  20. Разработка нефтяных месторождений. В 4 т. Т. 1. Разработка нефтяных месторождений на поздней стадии / ред. Н.И. Хисамутдинов, М.М. Хасанов, А.Г. Телин. М.: Изд-во ВНИИОЭНГ, 1994. 240 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).