Epigenetic geochemical dynamics and driving mechanisms of chemical elemental distribution patterns in soil in Southwest China

Cover Page

Cite item

Full Text

Abstract

The Earth’s surface is a complex system involving mutual interactions of its many components, including mountains, rivers, forests, farmlands, lakes and grasses. The interaction and mutual feedback of chemical elements in Earth's surface layer can drive changes in chemical elemental distribution patterns. In this study, we evaluated the mechanisms and interactions driving the distribution patterns of macroelements, probiotics, halogens and heavy metals in soils in Southwest China, based on a systematic geochemical land-quality survey at a scale of 1:250000. The results showed that the parent material determines the natural state of chemical elements in land resources. Epigenetic geochemical dynamics reshapes the distribution patterns of chemical elements in top soil; biogeochemical processes drive the evolutionary trends of land quality; and human activities, such as mining, disrupt the natural evolution of chemical elemental distribution patterns. The establishment of an epigenetic geochemical dynamics theory allows the construction of a framework for understanding the Earth's surface layer and promoting technological innovations for the comprehensive geochemical investigation of land resources.

About the authors

Hangxin Cheng

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: 916679036@qq.com

Min Peng

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences; China University of Geosciences (Beijing)

Email: pm-ant@qq.com

Chuandong Zhao

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: Zhaochuandong@igge.cn

Wei Han

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: 331224192@qq.com

Huiyan Wang

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: wanghuiyan@igge.cn

Qiaolin Wang

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: 408409647@qq.com

Fan Yang

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: yangfan@igge.cn

Fugui Zhang

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: zhangfugui@igge.cn

Chengwen Wang

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: 187311220@qq.com

Fei Liu

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: 29619105@qq.com

Yalong Zhou

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: zhouyalong@igge.cn

Shiqi Tang

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: 642191779@qq.com

Kuo Li

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: likuo@igge.cn

Ke Yang

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: 47384668@qq.com

Zheng Yang

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: yangzheng@igge.cn

Xiaomeng Cheng

Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences

Email: 309498905@qq.com

Ziwan Chen

Yunnan Institute of Geological Survey

Email: ChenZW_cdut@outlook.com

Hua Zhang

Sichuan Geological Survey

Email: 258155276@qq.com

Chunhu Mo

Guizhou Geological Survey

Email: 196189077@qq.com

References

  1. Hou Z. Support unified management and system restoration of natural resources based on earth system science // China Natural Resources News. 12.06.2018.
  2. Li K., Peng M., Zhao C., et al. Twenty years of geochemical survey of national land quality // Earth Science Frontiers. 2019. Vol. 26. Iss. 5. P. 1–37.
  3. Yang X., Wang P., Gao D. Climate change characteristics of Wumengshan National Nature Reserve from 1971 to 2015 // Journal of Northeast Forestry University. 2019. Vol. 47. Iss. 9. P. 71–75.
  4. Ji Z., Huang Z., Xie G. Dry and wet climate changes in Yunnan from 1961 to 2010 // Meteorological Science and Technology. 2013. Vol. 41. Iss. 6. P. 1073–1079.
  5. Xiao K., Xing S., Ding J., et al. Division of key mineralization zones of important solid minerals and characteristics of resource potential in China // Acta Geologica Sinica. 2016. Vol. 90. Iss. 7. P. 1269–1280.
  6. He L., Wu D., Zhao F., et al. Geological characteristics and ore prospecting model and ore prospecting direction of Hezhang Zhugongtang ultra-large lead-zinc deposit // Guizhou Geology. 2019. Vol. 36. Iss. 2. P. 106–109.
  7. Xu Y., Zhong Y., Wei X., Chen J., Liu H., Xie W., et al. Evolution of Permian mantle plumes and surface systems // Bulletin of Mineralogy, Petrology and Geochemistry. 2017. Vol. 36. Iss. 3. P. 359–373.
  8. Lin J. Spatiotemporal distribution and geological characteristics of the Permian basalt in the three provinces of Southwest China // Chinese Science Bulletin. 1985. Vol. 30. Iss. 12. P. 929–932.
  9. Ye J., Yao L. Discussions on the quality control method of regional geochemical survey sample analysis. Rock and Mineral Analysis. 2004;23(2):137–142.
  10. Wang S., Ji H., Ouyang Z., et al. Preliminary study on the weathering of carbonate rocks // Science in China. Series D. 1999. Vol. 29. Iss. 5. P. 441–449.
  11. Zhu L., Li J. Weathering of carbonate rocks and its environmental effects. Beijing: Geological Publishing House, 2004. 131 p.
  12. Darnley A.G., Björklund A., Bølviken B., Gustavsson N., Koval P.V., Plant J.A., et al. A global geochemical database for environmental and resource management. Paris: UNESCO Publishing, 1995. 122 p.
  13. Cui Z., Zhang H., Chen X., Zhang C., Ma W., Huang C., et al. Pursuing sustainable productivity with millions of smallholder farmers // Nature. 2018. Vol. 555. Iss. 7696. P. 363–366. https://doi.org/10.1038/nature25785
  14. Hu Y., Li C., Wen H., et al. Characteristics of silver minerals in the lead-zinc-silver deposits at the junction of Sichuan, Yunnan, and Guizhou // Bulletin of Mineralogy, Petrology and Geochemistry. 2000. Vol. 19. Iss. 4. P. 318–320.
  15. Fuge R., Johnson C. The geochemistry of iodine: a review // Environmental Geochemistry and Health. 1986. Vol. 8. Iss. 2. P. 31–54. https://doi.org/10.1007/BF02311063
  16. Muramatsu Y., Yoshida S., Fehn U., Amachi S., Ohmomo Y. Studies with natural and anthropogenic iodine isotopes: iodine distribution and cycling in the global environment // Journal of Environmental Radioactivity. 2004. Vol. 74. Iss. 1-3. P. 221–232. https://doi.org/10.1016/J.JENVRAD.2004.01.011
  17. Yamaguchi N., Nakano M., Takamatsu R., Tanida H. Inorganic iodine incorporation into soil organic matter: evidence from iodine K-edge X-ray absorption near-edge structure // Journal of Environmental Radioactivity. 2010. Vol. 101. Iss. 6. P. 451–457. https://doi.org/10.1016/j.jenvrad.2008.06.003
  18. Fuge R. Soils and Iodine Deficiency // Essentials of medical geology: impacts of the natural environment on public health / eds. O. Selinus. Dordrecht: Springer Netherlands, 2013. P. 417–432.
  19. Peng Y. Study on the distribution and migration of heavy metals in slag, soil and plants in the indigenous zinc smelting district of Northwest Guizhou. Guiyang: Guizhou University, 2018.
  20. Li Z., Feng X., Bi X., et al. Pollution status of heavy metals in soil on an indigenous zinc smelting site in Guizhou Province // Chinese Journal of Ecology. 2011. Vol. 30. Iss. 5. P. 55–59.
  21. Chen F., Dong Z., Wang C., et al. Pollution status and risk assessment of heavy metals in cultivated soil and crops in zinc smelting area // Environmental Science. 2017. Vol. 38. Iss. 10. P. 376–385.
  22. Li J., Zhong H., Zhu W.G., Bai Z.J., Hu W. Elemental and Sr-Nd isotopic geochemistry of Permian Emeishan flood basalts in Zhaotong, Yunnan Province, SW China // International Journal of Earth Science. 2017. Vol. 106. Iss. 2. P. 617–630. https://doi.org/10.1007/s00531-016-1326-z
  23. Chung S.L., Jahn B.M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary // Geology. 1995. Vol. 23. Iss. 10. P. 889–892. https://doi.org/10.1130/0091-7613(1995)0232.3.CO;2
  24. Xie X., Ren T. National geochemical mapping and environmental geochemistry – progress in China // Journal of Geochemical Exploration. 1993. Vol. 49. Iss. 1-2. P. 15–34. https://doi.org/10.1016/0375-6742(93)90037-M
  25. Lawton J. Earth system science // Science. 2001. Vol. 292. Iss. 5524. P. 1965. https://doi.org/10.1126/science.292.5524.1965
  26. Bockheim J.G., Gennadiyev A.N. Soil-factorial models and earth-system science: a review // Geoderma. 2010. Vol. 159. Iss. 3-4. P. 243–251. https://doi.org/10.1016/j.geoderma.2010.09.005

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).