ONTOLOGIES AS A FOUNDATION FOR FORMALIZATION OF SCIENTIFIC INFORMATION AND EXTRACTING NEW KNOWLEDGE
- 作者: Bubnov A.S.1, Gallini N.I.2, Grishin I.Y.3, Kobozeva I.M.4, Lukashevich N.V.5, Panich M.B.3, Raevsky E.N.6, Sadkovsky F.A.3, Timirgaleeva R.R.3
-
隶属关系:
- Knowledge Engineering Laboratory, Institute for Mathematical Research of Complex Systems, Lomonosov Moscow State University
- Vernadsky Crimean Federal University
- Branch of Lomonosov Moscow State University in the city of Sevastopol
- Faculty of Philology, Lomonosov Moscow State University
- Research Computing Center, Lomonosov Moscow State University
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
- 期: 卷 520, 编号 1 (2024)
- 页面: 82-89
- 栏目: COMPUTER SCIENCE
- URL: https://journals.rcsi.science/2686-9543/article/view/280135
- DOI: https://doi.org/10.31857/S2686954324060122
- EDN: https://elibrary.ru/KKGRGT
- ID: 280135
如何引用文章
详细
作者简介
A. Bubnov
Knowledge Engineering Laboratory, Institute for Mathematical Research of Complex Systems, Lomonosov Moscow State UniversityMoscow, Russia
N. Gallini
Vernadsky Crimean Federal UniversitySimferopol, Russia
I. Grishin
Branch of Lomonosov Moscow State University in the city of SevastopolSevastopol, Russia
I. Kobozeva
Faculty of Philology, Lomonosov Moscow State UniversityMoscow, Russia
N. Lukashevich
Research Computing Center, Lomonosov Moscow State University
Email: louk_nat@mail.ru
Moscow, Russia
M. Panich
Branch of Lomonosov Moscow State University in the city of SevastopolSevastopol, Russia
E. Raevsky
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State UniversityMoscow, Russia
F. Sadkovsky
Branch of Lomonosov Moscow State University in the city of SevastopolSevastopol, Russia
R. Timirgaleeva
Branch of Lomonosov Moscow State University in the city of SevastopolSevastopol, Russia
参考
- Еременко Г. О. Elibrary.ru: курс на повышение качества контента // Университетская книга, 2016, 3. С. 62–68.
- Ginsparg P. ArXiv at 20 // Nature, 2011, 476(7359). P. 145–147. https://doi.org/10.1038/476145a
- Jain S. M. Introduction to transformers for NLP: With the Hugging Face library and models to solve problems // Berkeley, CA: Apress, 2022. P. 51–67. ISBN: 9781484288443.
- Wang K., Shen Z., Huang C.-Y. et al. Microsoft academic graph: When experts are not enough // Quantitative Science Studies, 2020, 1(1). P. 396–413. https://doi.org/10.1162/qss_a_00021
- Lund B. D., Wang T. Chatting about ChatGPT: how may AI and GPT impact academia and libraries? // Library hi tech news, 2023, 40(3). P. 26–29. https://doi.org/10.1108/LHTN-01-2023-0009
- Haider J., Söderström K. R. Ekström B. et al. GPTfabricated scientific papers on Google Scholar: Key features, spread, and implications for preempting evidence manipulation // Harvard Kennedy School Misinformation Review, 2024, 5(5). P. 1–16.
- Dadkhah M., Oermann M. H., Hegedüs M. et al. Detection of fake papers in the era of artificial intelligence // Diagnosis, 2023, 10(4). P. 390–397. https://doi.org/10.1515/dx-2023-0090
- Wittau J., Seifert R. How to fight fake papers: a review on important information sources and steps towards solution of the problem // NaunynSchmiedeberg’s archives of pharmacology, 2024. P. 1–14. https://doi.org/10.1007/s00210-024-03272-8
- Kendall G., da Silva J. A. T. Risks of abuse of large language models, like ChatGPT, in scientific publishing: Authorship, predatory publishing, and paper mills // Learned Publishing, 2024, 37(1). P. 55–62. https://doi.org/10.1002/leap.1578
- Tirumala K., Simig D., Aghajanyan A. et al. D4: Improving LLM pretraining via document deduplication and diversification // Advances in Neural Information Processing Systems, 2023, 36. P. 53983–53995. https://doi.org/10.48550/arXiv.2308.12284
- Beltagy I., Lo K., Cohen A. SciBERT: A Pretrained Language Model for Scientific Text // Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019. P. 3615–3620. https://doi.org/10.18653/v1/D19-1371
- Gerasimenko N. A., Chernyavsky A. S., Nikiforova M. A. RuSciBERT: A transformer language model for obtaining semantic embeddings of scientific texts in Russian // Doklady Mathematics, 2022, 106, Suppl 1. P. S95–S96. https://doi.org/10.1134/S1064562422060072
- Горячко В. В., Бубнов А. С., Раевский Е. В., Семенов А. Л. Цифровой ковчег знаний // Доклады Российской академии наук. Математика, информатика, процессы управления, 2022, 508(1). С. 128–133. https://doi.org/10.31857/S2686954322070098
- Hogan A., Blomqvist E., Cochez M, et al. Knowledge graphs // ACM Computing Surveys (CSUR), 2021, 54(4). P. 1–37. https://doi.org/10.1145/344777
- Dong X., Gabrilovich E., Heitz G., et al. Knowledge vault: A web-scale approach to probabilistic knowledge fusion // Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014. P. 601–610. https://doi.org/10.1145/2623330.2623623
- Vrandečić D., Krötzsch M. Wikidata: a free collaborative knowledgebase // Communications of the ACM, 2014, 57(10). P. 78–85. https://doi.org/10.1145/2629489
- Shenoy K., Ilievski F., Daniel Garijo D., et al. A study of the quality of Wikidata // Journal of Web Semantics, 2022, 72. P. 100679. https://doi.org/10.1016/j.websem.2021.100679
- Hug S. E., Ochsner M., Brändle M. P. Citation analysis with Microsoft academic // Scientometrics, 2017, 111. P. 371–378. https://doi.org/10.1007/s11192-017-2247-8
- Васенин В. А. Афонин С. А., Голомазова Д. Д. и др. Интеллектуальная система тематического исследования научно-технической информации (ИСТИНА) // Информационное общество, 2013, 1–2. С. 39–57.
- Козицын А. С., Афонин С. А. Алгоритм разрешения неоднозначности имен авторов в ИАС ИСТИНА // Современные информационные технологии и ИТ-образование, 2020, 16(1). С. 108–117. https://doi.org/10.25559/SITITO.16.202001.108-117
- Семенов А. Л. Искусственный интеллект в обществе // Доклады РАН. Математика, информатика, процессы управления. Специальный выпуск “Технологии искусственного интеллекта и машинного обучения”. 2023, 514(2). С. 6–19. https://doi.org/10.31857/S2686954323350023
- Wille R. Formal Concept Analysis as Mathematical Theory of Concepts and Concept Hierarchies // In: Ganter B., Stumme G., Wille R. (eds) Formal Concept Analysis. Lecture Notes in Computer Science, 2005, 3626. Springer, Berlin, Heidelberg. P. 1–33. https://doi.org/10.1007/11528784_1
- Лукашевич Н. В., Добров Б. В., Павлов А. М., Штернов С. В. Онтологические ресурсы и информационно-аналитическая система в предметной области “безопасность” // Онтология проектирования, 2018, 1(27). https://cyberleninka.ru/article/n/ontologicheskie-resursy-i-informionno-analiticheskaya-sis-tema-v-predmetnoy-oblasti-bezopasnost (дата обращения: 01.10.2024).
- Семенов А. Л., Раевский Е. Н., Бубнов А. С. и др. Универсальная энциклопедическая платформа работы со знанием // Современные информационные технологии и ИТ-образование. 2023, 19(3). С. 696–703.
- https://doi.org/10.25559/SITITO.019.202303.696-703
补充文件
