THREE-DIMENSIONAL GRID CHARACTERISTIC SCHEMES OF HIGH ORDER OF APPROXIMATION
- Authors: Petrov I.B.1, Golubev V.I.1, Shevchenko A.V.1,2, Sharma A.3
-
Affiliations:
- Moscow Institute of Physics and Technology (National Research University)
- Ishlinsky Institute for Problems in Mechanics RAS
- IPS Academy, Institute of Engineering and Science
- Issue: Vol 520, No 1 (2024)
- Pages: 11-18
- Section: MATHEMATICS
- URL: https://journals.rcsi.science/2686-9543/article/view/280125
- DOI: https://doi.org/10.31857/S2686954324060029
- EDN: https://elibrary.ru/KMBUKH
- ID: 280125
Cite item
Abstract
About the authors
I. B. Petrov
Moscow Institute of Physics and Technology (National Research University)
Email: petrov@mipt.ru
Corresponding Member of the RAS Dolgoprudny, Moscow Region, Russia
V. I. Golubev
Moscow Institute of Physics and Technology (National Research University)
Email: w.golubev@mail.ru
Dolgoprudny, Moscow Region, Russia
A. V. Shevchenko
Moscow Institute of Physics and Technology (National Research University); Ishlinsky Institute for Problems in Mechanics RAS
Email: alexshevchenko@phystech.edu
Dolgoprudny, Moscow Region, Russia; Moscow, Russia
A. Sharma
IPS Academy, Institute of Engineering and Science
Email: amitsharma@ipsacademy.org
Indore, India
References
- Moczo P., Kristek J., Kristekova M., Valovčan J., Galis M., Gregor D. Material Interface in the Finite-Difference Modeling: A Fundamental View. Bulletin of the Seismological Society of America. 2022. V. 113. № 1. P. 281–296.
- Duru K., Rannabauer L., Gabriel A.-A., Ling O., Igel H., Bader M. A stable discontinuous Galerkin method for linear elastodynamics in 3D geometrically complex elastic solids using physics based numerical fluxes. Computer Methods in Applied Mechanics and Engineering. 2022. V. 389. P. 114386.
- Vogl C., Leveque R. A High-Resolution Finite Volume Seismic Model to Generate Seafloor Deformation for Tsunami Modeling. Journal of Scientific Computing. 2017. V. 73. P. 1204–1215.
- Магомедов К. М., Холодов А. С. Сеточнохарактеристические численные методы. М.: Наука, 2018. 287 с.
- Dovgilovich L., Sofronov I. High-accuracy finitedifference schemes for solving elastodynamic problems in curvilinear coordinates within multiblock approach. Appl. Numer. Math. 2015. V. 93. P. 176–194.
- Nishikawa H., Van Leer B. Towards high-order boundary procedures for finite-volume and finitedifference schemes. 2023. https://doi.org/10.2514/6.2023-1605
- Khokhlov N. I., Favorskaya A., Furgailo V. GridCharacteristic Method on Overlapping Curvilinear Meshes for Modeling Elastic Waves Scattering on Geological Fractures. Minerals. 2022. V. 12. P. 1597.
- Петров И. Б., Голубев В. И., Петрухин В. Ю., Никитин И. С. Моделирование сейсмических волн в анизотропных средах. Доклады Российской академии наук. Математика, информатика, процессы управления. 2021. Т. 498. № 1. С. 59–64.
- Петров И. Б., Голубев В. И., Шевченко А. В. О задаче акустической диагностики прискважинной зоны. Доклады Российской академии наук. Математика, информатика, процессы управления. 2020. T. 492. № 1. С. 92–96.
- Голубев В. И., Никитин И. С., Бураго Н. Г., Голубева Ю. А. Явно-неявные схемы расчета динамики упруговязкопластических сред с малым временем релаксации. Дифференциальные уравнения. 2023. Т. 59. № 1. С. 1–11.
- Головизнин В. М., Соловьев А. В. Дисперсионные и диссипативные характеристики разностных схем для уравнений в частных производных гиперболического типа. М.: МАКС Пресс, 2018, 198 с.
- Головизнин В. М., Соловьев А. В. Диссипативные и дисперсионные свойства разностных схем для линейного уравнения переноса на меташаблоне 4 × 3. Матем. моделирование, 33:6 (2021), 45–58; Math. Models Comput. Simul., 14:1 (2022), 28–37.
- Trotter H. F. Approximation of semi-groups of operators. Pac. J. Math. 1958. V. 8. No. 4. P. 887–919.
- Godunov S. K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. 1959. V. 89. № 3. P. 271–306.
- Strang G. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 1968. V. 5. P. 506–517.
- Ruth R. D. A canonical integration technique. IEEE Trans. Nuclear Sci. 1983. V. 30. P. 2669–2671.
- Cervi J., Spiteri R. High-Order Operator Splitting for the Bidomain and Monodomain Models. SIAM Journal on Scientific Computing. 2018. V. 40. №. 2. P. A769–A786.
- Cervi J., Spiteri R. A comparison of fourth-order operator splitting methods for cardiac simulations. Applied Numerical Mathematics. 2019. V. 145. P. 227–235.
- Golubev V. I., Shevchenko A. V., Petrov I. B. Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting. Computer Research and Modeling. 2022. V. 14. № 4. P. 899–910.
- Sedov L. I. Course in Continuum Mechanics (Nauka, Moscow, 1970; Wolters-Noordhoff, Groningen, 1971), V. 1.
- Rusanov V. V. Difference schemes of the third order of accuracy for the forward calculation of discontinuous solutions. Dokl. Akad. Nauk SSSR. 1986. V. 180. № 6. P. 1303–1305.
- Kholodov A. S. The construction of difference schemes of increased order of accuracy for equations of hyperbolic type. USSR Computational Mathematics and Mathematical Physics. 1980. V. 20. № 6. P. 234–253.
- Auzinger W., Koch O., Thalhammer M. Defectbased local error estimators for high-order splitting methods involving three linear operators. Numer Algor. 2015. V. 70. P. 61–91.
- Петров И. Б., Голубев В. И., Шевченко А. В., Никитин И. С. Об аппроксимации граничных условий повышенного порядка в сеточнохарактеристических схемах. Доклады Российской академии наук. Математика, информатика, процессы управления. 2023. T. 514. № 1. С. 52–58.
Supplementary files
