Stability of solutions to the logistic equation with delay, diffusion and nonclassical boundary conditions
- Authors: Kashchenko I.S.1, Kashchenko S.A.1, Maslenikov I.N.1
-
Affiliations:
- P. G. Demidov Yaroslavl State University
- Issue: Vol 517, No 1 (2024)
- Pages: 101-108
- Section: MATHEMATICS
- URL: https://journals.rcsi.science/2686-9543/article/view/265431
- DOI: https://doi.org/10.31857/S2686954324030172
- EDN: https://elibrary.ru/XZUXPP
- ID: 265431
Cite item
Abstract
The work is devoted to the logistic equation with delay and diffusion with non-classical boundary conditions. The stability of a nontrivial equilibrium state is investigated, and the resulting bifurcations are studied numerically.
About the authors
I. S. Kashchenko
P. G. Demidov Yaroslavl State University
Author for correspondence.
Email: iliyask@uniyar.ac.ru
Regional Scientific and Educational Mathematical Center of Yaroslavl State University
Russian Federation, YaroslavlS. A. Kashchenko
P. G. Demidov Yaroslavl State University
Email: kasch@uniyar.ac.ru
Regional Scientific and Educational Mathematical Center of Yaroslavl State University
Russian Federation, YaroslavlI. N. Maslenikov
P. G. Demidov Yaroslavl State University
Email: igor.maslenikov16@yandex.ru
Regional Scientific and Educational Mathematical Center of Yaroslavl State University
Russian Federation, YaroslavlReferences
- Wu J. Theory and applications of partial functional differential equations. New York: Springer-Verlag, 1996.
- Cushing J. M. Integrodifferential equations and delay models in population dynamics. Springer, 1977.
- Kuang Y. Delay differential equations: with applications in population dynamics. Academic Press, 1993.
- Murray J.D. Mathematical biology II: Spatial models and biomedical applications. New York : Springer, 2001. V. 3.
- Gourley S.A., So J.W-H., Wu J.H. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics // Journal of Mathematical Sciences. 2004. V. 124. P. 5119–5153.
- Кащенко С.А., Логинов Д.О. Бифуркации при варьировании граничных условий в логистическом уравнении с запаздыванием и диффузией // Математические заметки. 2019. Т. 106. № 1. С. 138–143.
- Wright E.M. A non-linear difference-differential equation // J. fur die reine und angewandte Math. (Crelles Journal). 1955. V. 194. P. 66–87.
- Кащенко С.А. Динамика моделей на основе логистического уравнения с запаздыванием. М.: КРАСАНД, 2020.
- Кащенко С.А. , Толбей А.О. Бифуркации в логистическом уравнении с диффузией и запаздыванием в граничном условии // Матем. заметки. 2023. Т. 113. № 6. С. 940–944.
- Rudyi A.S. Theoretical fundamentals of the method for thermal diffusivity measurements from auto-oscillation parameters in a system with a thermal feedback // International J. of Thermophysics. 1993. V. 14. P. 159–172.
Supplementary files
