APPROXIMATION ALGORITHMS WITH CONSTANT FACTORS FOR A SERIES OF ASYMMETRIC ROUTING PROBLEMS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, the first fixed-ratio approximation algorithms are proposed for the series of asymmetric settings of the well-known combinatorial routing problems. Among them are the Steiner cycle problem, the prize-collecting traveling salesman problem, the minimum cost cycle cover problem by a bounded number of cycles, etc. Almost all the proposed algorithms rely on original reductions of the considered problems to auxiliary instances of the Asymmetric Traveling Salesman Problem and employ the breakthrough approximation results for this problem obtained recently by O. Svensson, J. Tarnawski, L. Végh, V. Traub and J. Vygen. On the other hand, approximation of the cycle cover problem was proved by more deep extension of their approach.

About the authors

E. D. Neznakhina

N.N. Krasovskii Institute of Mathematics and Mechanics; Ural federal university

Author for correspondence.
Email: eneznakhina@yandex.ru
Russia, Ekaterinburg; Russia, Ekaterinburg

Yu. Yu. Ogorodnikov

N.N. Krasovskii Institute of Mathematics and Mechanics; Ural federal university

Author for correspondence.
Email: yogorodnikov@gmail.com
Russia, Ekaterinburg; Russia, Ekaterinburg

K. V. Rizhenko

N.N. Krasovskii Institute of Mathematics and Mechanics

Author for correspondence.
Email: kseniarizhenko@gmail.com
Russia, Ekaterinburg

M. Yu. Khachay

N.N. Krasovskii Institute of Mathematics and Mechanics

Author for correspondence.
Email: mkhachay@imm.uran.ru
Russia, Ekaterinburg

References

  1. Gutin G., Punnen A.P. The Traveling Salesman Problem and Its Variations. Springer US, Boston, MA, 2007.
  2. Toth P., Vigo D. Vehicle Routing. Problems, Methods, and Applications. SIAM, Philadelphia, 2014.
  3. Desrosiers J. and Lübbecke M.E. Branch-Price-and-Cut Algorithms. In Wiley Encyclopedia of Operations Research and Management Science (eds. J.J. Cochran, L.A. Cox, P. Keskinocak, J.P. Kharoufeh and J.C. Smith). Wiley and Sons, NJ. 2015.
  4. Gendreau M., Potvin J.-Y. Handbook of Metaheuristics. Springer. 2019.
  5. Vazirani V. Approximation algorithms. Springer. Berlin. 2003.
  6. Williamson D.P., Shmoys D.B. The Design of Approximation Algorithms. New York, USA, 2011.
  7. Christofides N. Worst-case analysis of a new heuristic for the Travelling Salesman Problem // Technical Report 388. Graduate School of Industrial Administration. Carnegie-Mellon University. 1976.
  8. Сердюков А.И. О некоторых экстремальных обходах в графах // Управляемые системы. 1978. Т. 17. С. 76–79.
  9. Haimovich M., Rinnooy Kan A.H.G. Bounds and Heuristics for Capacitated Routing Problems // Mathematics of Operations Research. 1985. V. 10. № 4. P. 527–542.
  10. Asadpour A., Goemans M.X., Mądry A., Gharan S.O., Saberi A. An -approximation algorithm for the asymmetric traveling salesman problem // Operations Research. 2017. V. 65. № 4. P. 1043–1061.
  11. Svensson O., Tarnawski J., Vegh L.A. A constant-factor approximation algorithm for the Asymmetric Traveling Salesman Problem // J. ACM. 2020. V. 67. № 6. P. 1–53.
  12. Traub V., Vygen J. An improved approximation algorithm for the Asymmetric Traveling Salesman Problem // SIAM Journal on Computing. 2022. V. 51. № 1. P. 139–173.
  13. Khachay M., Neznakhina E., Ryzhenko K. Constant-factor approximation algorithms for a series of combinatorial routing problems based on the reduction to the Asymmetric Traveling Salesman Problem // Proc. Steklov Inst. Math. 2022. V. 319. № 1. P. S140–S155.
  14. Rizhenko K., Neznakhina K., Khachay M. Fixed ratio polynomial time approximation algorithm for the Prize-Collecting Asymmetric Traveling Salesman Problem // Ural Math. Journal. 2023. V. 9. № 1. P. 135–146.
  15. Хачай М.Ю., Незнахина Е.Д., Рыженко К.В. Полиномиальная аппроксимируемость асимметричной задачи о покрытии графа ограниченным числом циклов // Труды Института математики и механики УрО РАН. 2023. Т. 29. № 3. С. 261–273.
  16. van Bevern R., Hartung S., Nichterlein A., Sorge M. Constant-factor approximations for capacitated arc routing without triangle inequality // Operations Research Letters. 2014. V. 42. № 4. P. 290–292.
  17. Papadimitriou C. Euclidean TSP is NP-complete // Theoret. Comput. Sci. 1977. V. 4. P. 237–244.
  18. Bienstock D., Goemans M.X., Simchi-Levi D., Williamson D. A note on the Prize-Collecting Traveling Salesman Problem // Math. Program. 1993. V. 59. P. 413–420.
  19. Khachay M., Neznakhina K. Approximability of the Minimum-Weight -Size Cycle Cover Problem // J. of Global Optimization. 2016. V. 66. № 1. P. 65–82.
  20. VRP-REP: the vehicle routing problem repository. http://www.vrp-rep.org/ Дата обращения 12.09.23.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (154KB)
3.

Download (38KB)
4.

Download (280KB)

Copyright (c) 2023 Е.Д. Незнахина, Ю.Ю. Огородников, К.В. Рыженко, М.Ю. Хачай

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».