CONDITIONAL COST FUNCTION AND NECESSARY OPTIMALITY CONDITIONS FOR INFINITE HORIZON OPTIMAL CONTROL PROBLEMS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Infinite horizon optimal control problem with general endpoint constraints is reduced to a family of standard problems on finite time intervals containing the value of the conditional cost of the phase vector as a terminal term. New version of the Pontryagin maximum principle containing an explicit characterization of the adjoint variable is obtained for the problem with a general asymptotic endpoint constraint. In the case of the problem with free final state this approach leads to a normal form version of the maximum principle formulated completely in the terms of the conditional cost function.

Авторлар туралы

S. Aseev

Steklov Mathematical Institute of Russian Academy of Sciences; Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: aseev@mi-ras.ru
Russian Federation, Moscow; Russian Federation, Moscow

Әдебиет тізімі

  1. Clarke F. Functional analysis, calculus of variations and optimal control. Graduate Texts in Mathematics. V. 264. London: Springer-Verlag, 2013.
  2. Ramsey F.P. A mathematical theory of saving // Econ. J. 1928. V. 38. P. 543–559.
  3. Асеев С.М., Вельов В.М. Другой взгляд на принцип максимума для задач оптимального управления с бесконечным горизонтом в экономике // УМН. 2019. Т. 74. № 6. С. 3–54.
  4. Carlson D.A., Haurie A.B., Leizarowitz A. Infinite horizon optimal control. Deterministic and Stochastic Systems. Berlin: Springer, 1991.
  5. Seierstad A., Sydsæ ter K. Optimal control theory with economic applications. Amsterdam: North-Holland, 1987.
  6. Acemoglu D. Introduction to modern economic growth. Princeton: Princeton Univ. Press, 2008.
  7. Barro R.J., Sala-i-Martin X. Economic growth. New York: McGraw Hill, 1995.
  8. Halkin H. Necessary conditions for optimal control problems with infinite horizons // Econometrica. 1974. V. 42. P. 267–272.
  9. Valente S. Sustainable development, renewable resources and technological progress // Environmental and Resource Economics. 2005. V. 30. № 1. P. 115–125.
  10. Valente S. Optimal growth, genuine savings and long-run dynamics // Scottish Journal of Political Economy. 2008. V. 55. № 2. P. 210–226.
  11. Aseev S.M., Veliov V.M. Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions // Тр. Ин-та математики и механики УрО РАН. 2014. Т. 20. № 3. С. 41–57.
  12. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М: Наука. Глав. ред. физ.-мат. лит., 1979.
  13. Aseev S.M., Veliov V.M. Needle variations in infinite-horizon optimal control. Variational and Optimal Control Problems on Unbounded Domains. Contemporary Mathematics. 2014. V. 619. Wolansky G., Zaslavski A.J., Eds., Providence: Amer. Math. Soc. 1–17.
  14. Aseev S.M., Veliov V.M. Maximum principle for infinite-horizon optimal control problems with dominating discount // Dynamics of Continuous, Discrete and Impulsive Systems. Ser. B: Applications & Algorithms. 2012. V. 19. № 1–2. P. 43–63.
  15. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. М.: Наука. Глав. ред. физ.-мат. лит., 1985.
  16. Асеев С.М. Сопряженные переменные и межвременные цены в задачах оптимального управления на бесконечном интервале времени // Тр. МИАН. 2015. Т. 290. С. 239–253.
  17. Кудрявцев Л.Д. Курс математического анализа. Учеб. для вузов в 3 тт. Т. 2. Ряды. Дифференциальное и интегральное исчисление функций многих переменных. М.: Дрофа, 2004.
  18. Aseev S.M. The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions // J. Math. Sci. 2023. V. 270. № 4. P. 531–546.
  19. Асеев С.М. Принцип максимума для задачи оптимального управления с асимптотическим концевым ограничением // Тр. Ин-та математики и механики УрО РАН. 2021. Т. 27. № 2. С. 35–48.
  20. Бродский Ю.И. Необходимые условия слабого экстремума для задач оптимального управления на бесконечном интервале времени // Матем. сб. 1978. Т. 105(147). № 3. С. 371–388.
  21. Seierstad A. A maximum principle for smooth infinite horizon optimal control problems with state constraints and with terminal constraints at infinity. // Open J. Optim. 2015. V. 4. P. 100–130.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© С.М. Асеев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».